Mirdterm Scientific Report

Molecular line shape studies for atmospheric remote sensing

Nguyen Thi Huyen Trang

Supervisor: Dr. Ha Tran, LISA, CNRS, Université Paris Est Créteil, France Co-Supervisor: Dr. Ngo Ngoc Hoa, Hanoi University of Education, Vietnam

Outline

- •Objective of thesis
- Method of research
- •rCMDS for CO_2 - N_2/O_2 and analysis procedure
- •Conclusions and near future working plan
- Scientific activities

The spectroscopy of atmospheric molecules

Line-shape models

The Hartmann-Tran (HT) profile

 \rightarrow the new reference line-shape model for high resolution atmospheric remote sensing

\rightarrow remaining problems

- Be tested with a limited number of measurements: relevant parameters are not available for many lines of various molecular systems
- Huge amount of works has to be done for laboratory experiments under atmospheric temperature and pressure conditions to deduce HTp parameters for atmospheric applications

Considered molecules

https://www.epa.gov/ghgemissions/overview-greenhouse-gases

Objectives of Research

- Accurate predictions of molecular line shapes for atmospheric pressure and temperature conditions for CO_2 N₂O, CH₃Cl and H₂O
- Combination of simulations and a limited number of measurements to generate parameters of the HTp for high precision remote sensing; The measurements are used to validate the prediction.

Method of the research

* **Simulations**: Using re-quantized classical molecular dynamic simulations to directly predict the spectral line shapes by Fourier transformation of the dipole auto-correlation function.

* Analysis method: Multi-fitting with HTp and its limited models (Voigt, speed-dependent Voigt, Nelkin–Ghatak, speed dependent Nelkin–Ghatak)

* Comparison between measured data and predicted parameters \rightarrow strategy to complete HTp data for remote sensing application.

Considered	Temperature	Pressure	Line-shape models	Line-shape
molecular	ranges		used	parameters
system				
CO2-N2	200, 250, 296K	1 atm with 50%	HTp + LM	$- \gamma_0, \gamma_2, \beta, \xi$
CO2-O2	200, 250, 296,	of CO ₂	and its limited line-	- $n\gamma_0$, $n\gamma_2$, $n\beta$,
	350K		shape models	nξ
CO2-air	200, 250, 296K			
	200 250 20 44	1		
N2O-air	200, 250, 296K	1 atm with 50%		
		of N ₂ O		

Table 1: Information of molecular systems have been considered 12/17/2020

Requantized Classical Molecular Dynamics Simulations for CO₂-N₂/O₂

Results and discussions

- rCMDS-calculated spectra
- The line-shape parameters and their temperature dependences
- Line broadening coefficients
- The speed dependence of the line width
- The Dicke narrowing parameter
- The first-order line-mixing parameter

rCMDS-calculated spectra

The line-broadening coefficient and its temperature dependence

 \rightarrow very good agreement with [52] for both 200 and 296K \rightarrow The averaged differences: 0.9 (±0.6) % (at 200 K); 1.1 (±0.8) % (at 296 K)

12/17/2020

[52] J. S. Wilzewski, M. Birk, J. Loos, and G. Wagner, J. Quant. Spectrosc. Radiat. Transfer **206**, 296–305 (2018).¹

The line-broadening coefficient and its temperature dependence

 \rightarrow "non-smooth" \rightarrow limited signal-to-noise ratio; considered temperatures

12/17/2020

[52] J. S. Wilzewski, M. Birk, J. Loos, and G. Wagner, J. Quant. Spectrosc. Radiat. Transfer **206**, 296–305 (2018). ¹⁵

Results for CO₂/N₂ The speed dependence of the line width and its temperature dependence

[52] J. S. Wilzewski, M. Birk, J. Loos, and G. Wagner, J. Quant. Spectrosc. Radiat. Transfer **206**, 296–305 (2018).

Results for CO₂/N₂ The Dicke narrowing parameter and its temperature dependence

[52] J. S. Wilzewski, M. Birk, J. Loos, and G. Wagner, J. Quant. Spectrosc. Radiat. Transfer 206, 296–305 (2018). ¹⁷

Results for CO₂/N₂ The first-order line-mixing parameter and its temperature dependence

rCMDS-calculated spectra

sdNG+LM can be used to analyze the spectra

The line-broadening coefficient and its temperature dependence

- →rather good agreement with measured results (average difference ~ 2%)
- \rightarrow the difference: due to the different used models

[77] Devi VM, Benner DC, Miller CE, Predoi-Cross A. J Quant Spectrosc Radiat Transf 2010;111:2355–69.
[78] Hikida T, Yamada KMT. J Mol Spectrosc 2006;239:154–9.

The line-broadening coefficient and its temperature dependence

[56] V. M. Devi, D. C. Benner, K. Sung, L. R. Brown, T. J. Crawford, C. E. Miller, B. J. Drouin, V. H. Payne, S. Yu, M. A. H. Smith, A. W. Mantz, and R. R. Gamache, J. Quant. Spectrosc. Radiat. Transfer 177, 117 (2016).
[65] Long D/A,/Wojtewicz S, Miller CE, Hodges JT. J Quant Spectrosc Rad Transf 2015;161:35–40.

[66] Benner DC, Devi VM, Sung K, et al. J Mol Spectrosc 2016;326:31–47.
[68] Ghysels M, Liu Q, Fleisher AJ, Hodges JT. Appl Phys B 2017;123-124:1–13.

The line-broadening coefficient and its temperature dependence

 \rightarrow predicted values O₂: quite close to air-broadening values

 \rightarrow air-broadening: good agreement (7-8%)

→rCMDS can be fully used to predict the temperature dependences

[56] V. M. Devi, D. C. Benner, K. Sung, L. R. Brown, T. J. Crawford, C. E. Miller, B. J. Drouin, V. H. Payne, S. Yu, M. A. H. Smith, A. W. Mantz, and R. R. Gamache, J. Quant. Spectrosc. Radiat. Transfer **177**, 117 (2016).

[66] Benner DQ; Devi VM, Sung K, et al. J Mol Spectrosc 2016;326:31–47.
[68] Ghysels M, Liu Q, Fleisher AJ, Hodges JT. Appl Phys B 2017;123-124:1–13.

[69] Wilzewski JS, Birk M, Loos J, Wagner G. J Quant Spectrosc Rad Transf 2018;206:296–305.

[79] Gordon IE,...The HITRAN2016 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 2017;203:3–69. doi:10.1016/j.jqsrt. 2017.06.038.

The speed dependence of the line width and its temperature dependence

 \rightarrow CO₂/O₂: rather good agreement

$$\rightarrow$$
 CO₂-air: $n_{\gamma 2} < n_{\gamma 0}$

 \rightarrow CO₂/air: slightly underestimates

Results for CO₂-O₂/air The Dicke narrowing parameter and its temperature dependence

 $\rightarrow \beta$: rather small compared to γ_0 and $\gamma_2 \rightarrow$ be influenced by the signal to noise ratio

$\rightarrow n_{\beta}$: large error bars

12/17/2020

[69] Wilzewski JS, Birk M, Loos J, Wagner G. J Quant Spectrosc Rad Transf 2018;206:296–305.

Results for CO₂-O₂/air The first-order line-mixing parameter

and its temperature dependence

→ $|m| \le 30$: very good agreement → higher |m|:, the rCMDS > measured/calculated values → The difference: due to requantization scheme

Results for CO₂-O₂/air The first-order line-mixing parameter and its temperature dependence

 \rightarrow no significant difference between n_{ζ} for O₂- and air-broadening \rightarrow good agreement with [69] for CO₂-N₂

Conclusions

- Using rCMDS to simulate spectra of molecular systems for CO₂
- Using HTp and its limited models to analyze simulated spectra
- Obtained parameters are good agreement with other results from measured data
- This method can be use to predict line-shape parameters for other linear molecules
- Similar study on N_2O -air have been considered; a paper has been prepared
- Continue working with CH_3Cl and H_2O in the near future

Scientific activities

1. Vietnam School of Earth Observation 2018 – Recontres du Vietnam-USTH-CNES (2018)

Poster: "Precise predictions of H2O line shapes over a wide pressure range using simulations corrected by a single measurement"

2. The 10th international conference on photonics and applications (ICPA-10) Poster:

- "New intensity measurements of Carbon Dioxide in the 1.6 μ m region"

- "Model Keilson-Storer and the spectroscopic parameters in the near-infrared of the pure water vapor with Hartmann-Tran profile"

3. Doctoral Day 2019-USTH

Oral talk: "Precise modelling of the infrared spectra of carbon dioxide and of water vapor for atmospheric remote sensing"

4. HRMS 2019, 2019 - Dijon, France

Poster:

- "Precise predictions of H_2O line shape over a wide pressure range using simulations corrected by a single measurement"

- "Prediction of line shape parameters and their temperature dependences for CO_2 -air using molecular dynamics simulations"

5. The 11th international conference on photonics and applications (**ICPA-11**)

Poster: "Prediction of air-broadened N₂O lines using classical molecular dynamics simulations"

Papers published

1. N.H. Ngo, **H.T. Nguyen**, H. Tran, *Precise predictions of* H_2O *line shapes over a wide pressure range using simulations corrected by a single measurement*, Journal of Quantitative Spectroscopy & Radiative Transfer 207 (2018) 16–22.

2. H. T. Nguyen, N. H. Ngo, and H. Tran. *Prediction of line shapes parameters and their temperature dependences for CO2-N2 using molecular dynamics simulations*, J. Chem. Phys. 149, 224301 (2018)

3. **H. T. Nguyen**, N. H. Ngo, and H. Tran. *Line-shape parameters and their temperature dependences predicted from molecular dynamics simulations for O*₂- *and air-broadened CO*₂ *lines*, J. Chem. Phys. 242, 106729 (2020)

02 papers on ICPA-10

1. Nguyen Thi Huyen Trang, Le Cong Tuong, Ngo Ngoc Hoa; *Model Kelson-Storer and the spectroscopic paramters in the near-infrared of pure water vapor.* Advances in Optics Photonics Spectroscopy and Applications X; 2019; 125

2. Ngo Ngoc Hoa, P.Chelin, X. Landsheere, M. Schwell, **Nguyen Thi Huyen Trang**, Le Cong Tuong. *New measurements of Carbon Dioxide absorption in the 1.6micrometer region*. Advances in Optics Photonics Spectroscopy and Applications X; 2019; 25

THANK YOU FOR YOUR ATTENTION!