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Abstract 

Nearly Zero-Energy Buildings (nZEBs) play an essential role in reducing energy 

consumption and CO₂ emissions. However, the nZEB application faces technical issues, 

investment costs, and the complexity of user behavior, building architecture, and grid 

constraints. Vietnam has a high potential for rooftop solar development. New energy 

policies encourage on-site self-consumption and expand the application of nZEBs. In 

the country, the construction sector has developed significantly over the years, but 

research on building energy has been limited due to insufficient building data.  

Based on a practical approach, a roadmap for a low-cost IoT platform for Building 

Energy Management was developed. It uses IoT-based WSN architecture, open 

hardware and open-source solutions to reduce costs and technical barriers and explicitly 

considers user behavior, which strongly influences system adoption and performance.  

This study proposed a two-level data quality framework for a low-cost IoT-BEMS to 

improve the reliability of analytics and control services. At the single-sensor level, it 

uses accuracy tests and virtual sensors, and at the network level, it applies AI to impute 

missing data in real time. Additionally, this work introduced lightweight energy models 

and nonlinear optimal control algorithms that can run on low-computing systems (such 

as Raspberry Pi). These solutions are tested in real buildings with technologies and grid 

constraints. The lessons from experimental case studies in France and Vietnam are 

summarized to guide the adaptation of IoT solutions to local contexts.  

Overall, the study contributed to the development of low-cost IoT-BEMS platforms 

towards widespread nZEB applications in Vietnam. 

Keywords: Buildings, nZEBs, WSN, IoT, energy modelling, optimal control. 
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Tóm tắt 

Công trình tiêu thụ năng lượng tiệm cận không (nZEB) đóng vai trò quan trọng trong 

việc giảm mức tiêu thụ năng lượng và lượng khí thải CO₂. Tuy nhiên, việc ứng dụng 

nZEB đang gặp phải các vấn đề kỹ thuật, chi phí đầu tư, sự phức tạp trong hành vi người 

dùng, kiến trúc công trình và các hạn chế về lưới điện. Việt Nam có tiềm năng lớn để 

phát triển điện mặt trời áp mái. Các chính sách năng lượng mới khuyến khích tự tiêu thụ 

tại chỗ và mở rộng ứng dụng nZEB. Mặc dù, ngành xây dựng đã phát triển đáng kể trong 

những năm qua, nhưng nghiên cứu về năng lượng tòa nhà còn hạn chế do thiếu dữ liệu 

về tòa nhà. 

Dựa vào tiếp cận thực tiễn, một lộ trình cho nền tảng IoT chi phí thấp dành cho Quản lý 

Năng lượng Tòa nhà đã được phát triển. Nó sử dụng kiến trúc mạng cảm biến không 

dây dựa trên công nghệ IoT, phần cứng mở và các giải pháp mã nguồn mở để giảm chi 

phí và rào cản kỹ thuật, đồng thời xem xét rõ ràng hành vi người dùng, yếu tố ảnh hưởng 

mạnh mẽ đến việc áp dụng và hiệu suất của hệ thống. 

Nghiên cứu này đề xuất một khung chất lượng dữ liệu hai cấp cho hệ thống IoT-BEMS 

chi phí thấp nhằm cải thiện độ tin cậy của các dịch vụ phân tích và điều khiển. Ở cấp độ 

cảm biến đơn, nó sử dụng các bài kiểm tra độ chính xác và cảm biến ảo, và ở cấp độ 

mạng, nó áp dụng trí tuệ nhân tạo (AI) để điền dữ liệu bị thiếu trong thời gian thực. 

Ngoài ra, nghiên cứu này đã giới thiệu các mô hình năng lượng gọn nhẹ và các thuật 

toán điều khiển tối ưu phi tuyến có thể chạy trên các hệ thống tính toán thấp (như 

Raspberry Pi). Các giải pháp này được thử nghiệm trong các tòa nhà thực tế với các 

công nghệ và hạn chế về lưới điện. Các bài học từ các nghiên cứu trường hợp thực 

nghiệm ở Pháp và Việt Nam được tóm tắt để hướng dẫn việc áp dụng các giải pháp IoT 

vào bối cảnh địa phương. 

Nhìn chung, nghiên cứu này đã đóng góp vào sự phát triển của các nền tảng IoT-BEMS 

chi phí thấp hướng tới ứng dụng rộng rãi trong các tòa nhà năng lượng gần bằng không 

(nZEB) tại Việt Nam. 

Từ khóa: Tòa nhà, nZEB, WSN, IoT, mô hình hóa năng lượng, điều khiển tối ưu.  
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Part 1. Introduction   

1.1. Energy context 

1.1.1. Energy context in the world 

An increase in global energy demand, resource depletion, energy supplies and 

environmental pressures are currently a concern for governments, organizations 

and individuals. In 2023, global energy demand is at a very high level, with total 

global primary energy demand around 640 EJ [1]. According to the APS scenario, 

fossil fuels (oil, coal and natural gas) still account for around 80% of total primary 

energy supply, while modern renewables provide only about 12% and nuclear 5% 

[1]. Although fossil fuels still account for a very high proportion, they are 

expected to be depleted in a short time, in detail, about 40–50 years for oil, 50–60 

years for natural gas, and 100–120 years for coal [2]. The countries need to 

accelerate the energy transition and improve energy efficiency globally to achieve 

SDG7 targets and net-zero emissions [3]. 

 

Figure 1. Global annual energy 

intensity improvements, 2000-2030 [1] 

 

Figure 2. Cumulative energy savings by 

lever and scenario, 2023-2030 [1] 

The data in the IEA report show global efforts in implementing energy efficiency 

solutions [1]. Figure 1 shows that the pace of energy intensity improvement has 

slowed to about 1% per year in 2022–2023 [1]. It is still far below the required 

scenarios (around -2% per year for STEPS, -3% per year for APS, and  -4% per 
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year for NZE) [1]. These values reflect different levels of policy effort on energy 

savings. The scenarios also differ in their cumulative effect on energy demand. 

As shown in Figure 2, the total expected energy savings from 2023 to 2030 are 

about 40 EJ in STEPS, around 90 EJ in APS, and more than 100 EJ in the NZE 

scenario [1]. In all scenarios, “technical & material efficiency” and 

“electrification & renewables” make the largest contribution, while the other 

levers play a supporting role [1]. Together, they point to the key actions needed 

towards a net-zero energy pathway. 

 

Figure 3. The annual change in CO₂ emissions from 1990-2023 [4] 

Figure 3 shows global CO₂ emissions from 1990 to 2023 [4]. They rise almost 

continuously over this period, reaching about 40 billion tons per year in 2023 [4], 

with only a slight drop around 2020 due to COVID-19. Overall, emissions remain 

very high. According to the Energy Progress Report 2024 [5], the world remains 

far from achieving the 2030 sustainable energy targets. Furthermore, progress in 

renewable energy use and energy efficiency remains slow [5]. International 

finance for clean energy remains insufficient and unequally distributed [5]. 

Therefore, the countries need to deploy stronger solutions to achieve their net-

zero energy targets.  
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1.1.2. Energy context in Vietnam 

Vietnam's economy continues to consume energy at a relatively high level 

compared to the regional and global average [6]. In 2023, total final energy 

consumption (TFC) was around 2.9 EJ, with oil (~33%), electricity (~31%), and 

coal (~23%) accounting for the main shares [6]. Industrialization, urbanization, 

and the rapid expansion of buildings are driving up electricity demand. Between 

2000 and 2023, per capita electricity consumption increased by 771% [7]. 

Electricity demand increased by more than 4% in 2023 and is projected to increase 

by approximately 7% annually from 2024 to 2026 [8]. Coal remains the primary 

fuel, accounting for about 45% of electricity production in 2023, leading to about 

293 MtCO₂ in emissions (5.6 times higher than in 2000) [9], [10]. Renewable 

energy sources (excluding hydropower) accounted for only about 16% of 

electricity in 2023 and are expected to increase to 19% in 2026 [9]. However, 

Vietnam's energy intensity is still high, about 3.2 GJ/1 USD PPP (2015) in 2023, 

belonging to the high group in the Asia-Pacific region [6]. 

During 2019–2021, the FIT mechanism supported the development of large-scale 

solar projects, particularly in provinces with high resource potential, such as Ninh 

Thuan and Binh Thuan [9],[11],[12]. However, high-density renewable energy 

deployment has led to local grid overload and congestion, resulting in challenges 

in reduction and operation [12],[13]. These indicate that Vietnam needs to 

strengthen the grid promptly, operate the system more flexibly, and place greater 

emphasis on distributed renewable energy sources [11][12].  

In 2024, the Government issued Resolution No. 135, which promotes rooftop 

solar for self-consumption [13] to reduce pressure on the power grid and 

emissions. Long-term strategies such as Power Development Plan VIII (PDP8) 

and national resolutions on climate and energy [14], [15], [16], [17], [18] have set 

a clear roadmap for Vietnam to build a safer, lower-carbon power system and 

move toward a net-zero emissions target by 2050. 
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1.2. Building Energy issues 

1.2.1. Buildings energy consumption in the world 

In 2022, energy use for operation in building sector accounted for approximately 30% 

of global final energy consumption (of which the residential sector accounts for 21%). 

Building floor area increased by approximating 25% between 2010 and 2022 and is 

expected to keep growing rapidly if no effective control measures [19]. 

 

Figure 4. Energy consumption of buildings by fuel type (2010–2022) [20] 

In Figure 4, during the period 2010-2022, total energy consumption in buildings 

increased from over 100 EJ to nearly 130 EJ (an increase of almost 30%) [20]. In 

this growth, the share of electricity has increased, but coal, oil, and traditional 

biomass still dominate, while modern renewables have only grown slowly.  

Building and construction sector emissions (including “embodied” of new 

construction) accounted for about 37% of total global energy & industrial process 

emissions [20]. From 2010 to 2022, total CO₂ emissions from building operations 

fluctuated little, ranging from 9 to 10 GtCO₂ per year. This figure represents only 

a little more than half of the reduction needed by 2030 [19]. 

 

Figure 5. Demonstration of CO₂ emissions in buildings during 2010–2022 period [20]. 
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Figure 5 shows that CO₂ emissions from the group using indirect energy 

(primarily electricity purchased from the grid) still account for a significantly 

higher proportion than the other group [20]. These observations indicate that 

reducing emissions in the building sector requires combining electricity savings 

with lower building energy intensity and a higher share of clean energy in the 

national power system. 

However, energy intensity in the global building sector has improved very slowly. 

During 2015 – 2022, it decreased only slightly, from about 153 kWh/m² to ~145 

kWh/m². The rate of energy efficiency improvement by 2022 was still less than 

50% of the rate required for NZE in 2030 [20]. The contribution of renewables to 

building energy demand remains limited. In 2022, modern renewables supplied 

only about 6% of final energy use in buildings, which is roughly one third of the 

level required in the NZE scenario by 2030 [19]. 

Meanwhile, global floor area growth is expected to increase by approximately 15% 

by 2030, with more than half of that increase coming from emerging and 

developing economies (including Vietnam) [19]. This suggests that future energy 

demand in the building sector will rise primarily in these regions. Consequently, 

the policies and technological solutions adopted there will significantly influence 

global energy trends in the construction industry. 

1.2.2. Buildings energy consumption in Vietnam 

According to the energy efficiency diagnostic report, buildings in Vietnam are 

among the most significant sources of electricity consumption. Buildings 

accounted for about 39% of national electricity consumption, with most coming 

from residential and administrative buildings (approximately 34%) and 

commercial buildings (5%) [21].  

The IEA's PDP8 scenarios forecast Vietnam's electricity demand to continue to 

increase sharply, from about 250 TWh in 2022 to 415 TWh in 2030 and 860 TWh 

in 2050 [12], with the building sector accounting for more than 40% [12]. This 

shows that buildings are the main component of Vietnam's total energy demand 
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in the future. 

 

Figure 6. Buildings stock projections growth rate in Vietnam [21]. 

During 2010-2020, the construction industry grew at nearly 6%/year, higher than 

GDP growth (~5.5%) [21]. The fact that the construction growth rate has been 

increasing faster than GDP indicates that the building stock is expanding more 

rapidly than the overall economy. In particular, multi-unit residential buildings 

account for the largest share of the floor area (see Figure 6). 

Vietnam has issued the National Standard on Energy Efficiency in Construction 

QCVN 09:2017/BXD and other policies to promote energy-saving and low-

carbon construction projects. However, implementation and enforcement still face 

many challenges [22]. In recent project reports, audit results indicate that many 

office and commercial buildings operate above recommended standards, 

indicating significant energy-saving potential [21],[23]. However, data on 

building energy intensity (EUI) are sparse and incomplete. They mostly come 

from a few case studies and outdated datasets. This indicates the urgent need to 

improve measurement, monitoring, and data collection to quantify savings better 

and design future NZE solutions. 

1.2.3. nZEBs – For sustainable energy development in Vietnam 

Globally, nZEBs are understood as buildings with very high energy efficiency, 
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where the remaining energy demand is supplied mainly by on-site or nearby 

renewable sources [24], [25]. In Vietnam's building energy sector, analyses 

indicate that building energy consumption is currently high but can be reduced 

through practical solutions, such as nZEBs. Furthermore, Vietnam has the 

potential to develop nZEB thanks to its rich solar resources. The average solar 

radiation is up to 5 kWh/m²/day in many regions, and the technical potential of 

solar power is estimated at hundreds of GW [26]. 

In the ASEAN region, Vietnam is among the leading countries in deploying 

rooftop PV in the building sectors. Vietnam has issued numerous policies, 

including the QCVN 09:2017/BXD standard for energy-efficient buildings, as 

well as national strategies and programs prioritizing energy saving, renewable 

energy, and net-zero emissions targets [14], [15], [16], [17], [18]. In particular, 

Decree No. 135/2024/NĐ-CP, issued in 2024, creates favorable conditions for 

Vietnamese buildings to self-supply part of their energy demand through on-site 

consumption [8]. These provide an essential foundation for the future deployment 

of nZEBs in Vietnam. However, QCVN 09:2017/BXD sets only minimum 

requirements for energy efficiency and has not yet established a dedicated nZEB 

standard with target EUI values and mandatory shares of renewable energy. The 

reason is that the data are incomplete, scattered, and very outdated, making it 

challenging to design and evaluate nZEBs. Meanwhile, Europe has a relatively 

clear nZEB definition framework, specified by type and climate zone [26]. Many 

studies on nZEBs have been conducted successfully in Europe, where buildings 

are subject to strict energy-efficiency regulations [25], [27]. These studies 

highlight that the nZEB concept must be adapted to local climatic and economic 

conditions in each country.  

IEA studies [28] indicate that the efficiency of Net ZEB also strongly depends on the level 

of load and source matching and how the building interacts with the grid. In the studies, 

calculating metrics such as the Load Match Index and Load/Supply Cover Factor requires 

detailed measurement data at hourly or even minute intervals.  
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Overall, to achieve the goal of (nZEB) in Vietnam, building a reliable building 

monitoring and data collection system is essential. This system will serve as a 

foundation for assessing the current operational status and proposing effective 

building energy management solutions. 

1.2.4. Building energy management  

1.2.4.1. Modeling and optimal control – Need monitoring parts in Buildings  

In building energy management, monitored data can be used to more efficiently 

coordinate energy use from the grid, on-site batteries, and other distributed 

renewable sources.  

 

Figure 7. MPC Basic Control Loop (Source: https://www.mathworks.com) 

In Figure 7, the Model Predictive Control (MPC) principle indicated the need for 

measured data. Modelling methods and optimization techniques all require sensor 

data in buildings [29], [30]. The study in Artiges (2016) shows that applying 

Model Predictive Control (MPC) to improve building energy performance 

requires high-quality monitoring and measurement devices in the building [30]. 

 

Figure 8. Modeling Topology for Building Design and Operation  [2] [29], [30]. 
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Figure 8 illustrates the process of building a model from a real system to 

application objectives. Data is collected, preprocessed, then the model is selected 

and developed in three directions (experimental, analytical, and numerical model) 

[2]. The numerical model poses practical challenges because it is complex and 

requires difficult to obtain physical parameters. The data-driven models, 

including both experimental and analytical models, are preferred for their 

simplicity. The statistical data in [31] indicated that most of the energy models 

studies use a real monitoring system.  

Then, the results are used for computing and applying control, simulation, design, 

and optimization in practical. There is an iterative process to improve the accuracy 

and reliability of the real system. In some studies, the monitoring components 

could enable a specific diagnosis to optimize the building’s renovation [32]. 

Furthermore, it also allows the realization of occupants’ behavior models [33]. 

Monitoring indoor conditions (T, RH, CO₂, energy sensors) and weather 

conditions should help better understand behavior regarding consumption, 

consequently, the level of use of PV generation and battery energy storage [34].  

1.2.4.2. Monitoring platforms- The state of the art  

Monitoring platforms are increasingly fundamental components of building 

energy management. Recent studies show that energy and environmental 

measurement data contribute to performance assessment, near-zero energy 

building (nZEB) design, and advanced control [35], [36]. 

The current trend is shifting from single-point measurement to multi-point, multi-

sensor, high-resolution monitoring methods control [35]. Many buildings now 

utilize Wireless Sensor Networks (WSNs) and smart electricity meters to monitor 

energy and indoor conditions. Such systems include sensor nodes, gateways, a 

central data system, and a user interface [35], [36]. For buildings to interact 

effectively with the grid, the monitoring systems require an additional 

bidirectional communication infrastructure with the grid [37]. 
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Numerous studies have proposed “low-cost” monitoring platforms using standard 

microcontrollers (Arduino, ESP32  [38], Raspberry Pi) and inexpensive sensors 

[35], [36]. This approach demonstrates the benefits of extensive monitoring across 

multiple areas within a building at an acceptable budget. Typically, a low-cost 

system has a total deployment cost under a few thousand US [36], suitable for 

small to medium sized building applications. 

 

Figure 9. Schematic Diagram of Energy-Efficiency Management  [36] 

Figure 9 [36] shows that effective energy management requires a “Low-cost 

monitoring platform” to collect and store data on building operations. Continuous 

monitoring of energy and environment creates a database that allows the 

construction of a characteristic consumption profile over time, weather and 

operating schedule. From there, managers can plan more rational equipment operation 

and maintenance, improve efficiency, extend equipment lifespan and reduce costs. 

However, the use of low-cost monitoring technologies poses challenges for data 

quality, requiring additional machine learning techniques [39], [40]. Another 

challenge is that building performance is shaped by occupant behavior. As 

monitoring systems combine sensor data with user actions, user-centered 

strategies that engage occupants become essential for practical energy 
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management [35], [36], [41]. 

Overall, monitoring systems are providing the primary data source for analyzing, 

forecasting, and optimizing building energy consumption. 

1.2.4.3. Building energy management barriers 

Despite recent advanced in monitoring platform, building energy management are 

still limited adoption in Vietnam. Multiple barriers to energy efficiency technologies 

have been identified in previous studies  [42], and broader challenges have been 

highlighted in the National Energy Efficiency Program 2019–2030 [43] .  

The lack of building-level energy management tools is one reason the energy-

saving potential has not been fully realized [43]. A significant barrier is the 

missing and scattered building measurement data. It is available only for a few 

large buildings. In most small to medium sized buildings, users can access only 

total meter data and bills through an EVN application. However, they cannot query 

their energy data in real time. The critical data, such as indoor conditions, equipment status, 

and user behavior, have not been systematically collected, thereby limiting the ability to 

evaluate and optimize building operations [36]. 

The installation of monitoring systems in existing buildings remains constrained 

by investment costs and user participation [36]. The IEA report  [37] shows that 

in ASEAN (including Vietnam), smart sensors, automation systems, and energy 

management are now implemented only in pilot projects. The lack of data and 

user feedback mechanisms remains a significant barrier to transferring 

information into practical actions (such as adjusting operations or changing 

energy use habits) [35], [36]. 

The advancement of IoT technologies provides a practical way to overcome 

several of these barriers by supporting open ecosystems, low-cost sensing, and 

improved connectivity in buildings [44], [45]. However, it is still difficult to 

deploy in practice because the available technology, user skills, and budgets differ 

cross country.  
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Therefore, the following sections examine how to deploy a building energy 

monitoring system towards nZEB in Vietnam. 

1.3. Objectives of the thesis 

The aim of thesis will focus on Nearly Zero Energy Buildings applications in 

Vietnam. There are two main objectives of the thesis as below: 

Objective 1:  Proposing solutions to launch an IoT platform in Buildings at low-cost  

- Proposing the low-cost monitoring platform bases on IoT technologies. 

Allowing low-skill users could easily develop and operate platform through 

open-hardware and open-sources.  

- Proposing methodologies for ensuring measured data quality.  

- Public energy efficiency awareness in community by cooperation projects. 

Objective 2: Practical energy management for nZEBs:  

- The IoT platform implementation.  

- Proposing models and optimization technique adapted to the low-cost platform.  

- Proposing optimal energy management strategies. 

1.4. Challenges to achieve the goals 

This work must deal with some challenges such as:  

- Low-cost IoT platform and system quality.  

- Complicated energy modeling and optimized control methods. 

- Energy management strategies adapt to technical constraints, users and 

energy conditions in local regions. 

1.5. Structure of the thesis report 

Part 1 – Introduction 

- Presents the energy context, with a focus on the building sector, which 

contributes to energy consumption and CO₂ emissions. 

- Review on Building Energy Management Systems to find gaps and challenges. 

- States the objectives of the thesis. 

- Summarizes the structure of the manuscript.  
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Part 2 – A practical route for launching an IoT platform for building 

energy management 

- Analyses IoT and wireless sensor network (WSN) technologies for building 

applications and proposes a low-cost IoT-BEMS architecture. 

- Proposes a data quality assurance framework (including single sensor level 

and sensor network level), including accuracy testing, correlation analysis, 

fault detection and data compensation using machine-learning models. 

- Describes the design, deployment of the IoT-BEMS platform on real 

testbeds, and provides practical guidelines for non-expert users in Vietnam 

to implement energy monitoring and basic analytics. 

Part 3 – Implementation of the IoT-BEMS platform - A case study 

- Implements the proposed IoT platform for BEMS on a real office building 

(VHH) in Vietnam, using low-cost hardware and time-series data. 

- Develops data-driven analyses for environment, user behavior, and Energy.  

- Proposes energy strategies relating behavior and analysis. 

- Estimating energy efficiency of project  

Part 4 – Optimal energy management strategies toward nZEBs 

- Introduces simplified energy models for PV production, battery storage and 

loads. 

- Presents optimization problems and algorithms adapted to low-cost 

computation (e.g. SQP-based methods and the NoLoad tool). 

- Applies the modelling and optimization framework to two case studies: an 

aquaponics greenhouse testbed in France and the VHH office building in 

Vietnam. 

- Investigates energy balance, PV–battery system sizing and operation 

strategies with TOU, and quantifies self-consumption, electricity bills and 

CO₂ emissions. 
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Final part – Conclusions of Thesis 

- Summarizes the main scientific and practical contributions of the thesis in 

IoT-BEMS design, data quality assurance and energy management. 

- Discusses the limitations of the current work and future deployment. 

- Highlights the collaborations with Vietnamese and French universities and 

research projects that supported to the thesis. 
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Part 2. A practical route for launch an IoT platform for building 

energy management 

2.1. Overview 

2.1.1. IoT and IoT-BEMS: definition and scope   

According to the report of Asian development bank [44], the definition of Internet 

of Things (IoT) identified as: “An IoT is a network that connects uniquely 

identifiable ‘Things’ to the Internet. The ‘Things’ have sensing/actuation and 

potential programmability capabilities. Through the exploitation of unique 

identification and sensing, information about the ‘Thing’ can be collected and the 

state of the ‘Thing’ can be changed from anywhere, anytime, by anything.” 

The term IoT-enabled BEMS (IoT-BEMS) refers to Building Energy 

Management Systems using connected sensors/actuators and gateways to monitor 

and control energy related subsystems (including Loads, on-site PV and storage) 

[45], [46].  

The present work focuses on small and medium-sized buildings, optionally 

equipped with PV and/or battery storage, and typically operated by low-skilled 

users. In this scope, IoT-BEMS deployments must remain cost-effective and 

simple enough to be installed and maintained by non-experts, while providing 

sufficient data for Building energy services. To ground the analysis, several IoT-

BEMS case studies in France and Vietnam are considered. These deployments 

provide the empirical basis for defining and evaluating the platform architecture 

(Section 2.2) and data quality (Section 2.3). 

2.1.2. IoT-BEMS platform architecture: opportunities and challenges  

In the BEMS, IoT platforms are organized into multiple layers that connect smart 

sensors, meters, and controllers to back-end services. Reference IoT architectures 

for the building sector, such as those discussed in [45], [47], [48] illustrate a 

familiar pattern: sensors convert analog signals into digital signals via ADC/DAC; 

gateways collect and pre-process data and communicate with data centers or cloud 

services, and send back commands to actuators using MQTT; block data center is 
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configured to manage, analyze, and security in real-time.  

From building owners and operators' point of view, the primary motivation is to 

reduce energy costs while maintaining continuous monitoring and control of their 

facilities. IoT technologies enable this by connecting physical components 

through sensors, actuators, and software to exchange data with other systems and 

end users on a platform. At a larger scale, such platforms also support smart-city 

integration and emerging energy services [45]. Wireless sensor networks (WSNs) 

are a core enabler in many IoT architectures, with documented benefits in recent 

studies [49], [50]: Lower deployment effort and cost; installation flexibility to 

existing infrastructure; reduced node power consumption thanks to advances in 

low-power electronics and communication protocols [30], [49]. 

Future buildings are expected to increase device connectivity to IoT, widely 

deploy WSN, functionalize components, and adopt advanced control to improve 

overall performance [44], [45]. However, three practical challenges in the 

adoption of WSN-based IoT-BEMS in real buildings, especially in small and 

medium-sized premises operated by low-skilled users: 

 Cost: hardware, installation, operation and maintenance must remain 

acceptable for small and medium-sized buildings. 

 Reliability: measurement accuracy, wireless coverage, interference, fault 

tolerance, battery lifetime and interoperability all affect the stability of data 

flows and control actions [45], [49].  Poor data quality directly degrades the 

performance of forecasting, control and energy services. 

 Low-skilled users: limited expertise in IoT, technologies and data analytics, 

which constrains how complex the platform, configuration procedures and 

diagnostic tools can be in practice [46].  

These considerations motivate the simple, interoperable IoT-BEMS architecture 

adopted in this thesis, based on low-cost WSNs. The following section (Section 

2.2) details the system architecture and (Section 2.3) introduces the data quality 

framework. 
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2.2. Development of IoT-BEMS  platform  

This section presents the overall workflow for implementing the proposed low-

cost IoT-BEMS, and shows how it is applied in practice in the case studies (see 

Figure 10).   

 

Figure 10. Overall workflow of the proposed low-cost IoT-BEMS implement [36] 

In Figure 10, first, the building profile is collected (location, architecture, internal 

loads, occupancy schedule, weather conditions and user preferences). Low-cost 

sensors then acquire environmental and energy data such as temperature, humidity, 

light, motion, PV, battery and grid power. A data-fusion layer aggregates these 

raw measurements into higher-level states (user behavior, HVAC and lighting 

status, door/window status). These variables are sent to the modelling and 

optimal-control layer, which computes commands for actuators (air-conditioner 

and lighting controllers). In the proposed workflow, the data quality (DQ) 

framework is embedded in the feedback loop to support maintenance. DQ-L1 

outputs (per-sensor fault labels and health indicators) are aggregated in the 

feedback block and forwarded to DQ-L2 for cross-sensor consistency checks and 

fault diagnosis. DQ-L2 results then drive maintenance actions 
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(test/calibrate/replace sensors). After DQ-L2, the fused data become a cleaner, 

validated stream and are sent to the next block for more reliable processing. The 

platform finally provides building energy services: monitoring dashboards, 

maintenance alerts, basic control suggestions and energy reports. 

The workflow shows that most of the complexity is handled automatically by the 

platform. Low-skill users without specialized technologies or energy management 

interact with the right-hand “services” block, while others run in the background.  

2.2.1. System Design 

In most projects, the building’s profile is required as the first step in defining the 

platform's boundaries and conditions. It includes the following information fields: 

project information includes targets, timeline and budget; Building data includes 

occupancy, operation schedules, energy consumption/production, and weather 

conditions; Building architecture includes location, floor area, type, age and 

function; User priorities includes cost, life-cycle, comfort and environmental 

concerns; Standard references: international standards and national building 

energy-efficiency codes. 

 

Figure 11. System Architecture for Building Monitoring and Control [43].  

Figure 11 shows the IoT platform architecture tailored to these dynamic energy 

and environmental management requirements. Based on the building profile, the 

proposed architecture comprises [43]: 

- Smart sensors for monitoring energy and environmental conditions (energy 
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meters, temperature and light sensors, motion sensors); Smart actuators for 

controlling electrical devices (lighting, air-conditioning and plug loads); 

- A gateway that communicates over multiple interfaces (Wi-Fi, RF24, 

ZigBee, Z-Wave, Bluetooth, etc.). In our implementation, the MQTT 

protocol is used to minimize network bandwidth; 

- A computer (Raspberry Pi) acting as a data center and hosting embedded 

algorithms, complemented by a cloud component for database management; 

- Open-source tools for time-series storage and visualization (InfluxDB, 

Grafana) and user interfaces (OpenHAB); 

- Constraint inputs related to electricity price, sources, and storage and user 

preferences. 

The next subsection presents the IoT-based wireless sensor network, from sensor 

choice to network design and communication protocols. 

2.2.2. IoT-based wireless sensors network  

2.2.2.1. Sensor selection  

Wireless sensor nodes available on the market provide a wide range of functions 

and communication technologies. Sensor selection should consider the physical 

quantity to be measured, required accuracy, building type and installation location. 

In the IoT-BEMS platform, sensors are grouped into three main categories:  

(1) Environmental sensors (Temperature, humidity, and luminosity sensors) to 

adjust cooling, heating and lighting according to ambient conditions; 

(2) Occupancy sensors (motion detectors, door contact sensors) to infer building 

occupancy and usage patterns; 

(3) Energy sensors (Current, voltage, power, and energy) to monitor electrical 

consumption and power sources, including the grid and photovoltaic (PV) 

systems.  
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Table 1.  Main characteristics of sensors deployed in the IoT-BEMS platform 

Location Variables Sensor type Range Accuracy Resolution Interface Category 

Indoor room 

(BME280) 

Temperature, 

relative 

humidity 

Environmental 

sensor  

−4080 °C; 

0100 %RH 

±0.5 °C; 

±2 %RH 

0.1 °C;  

0.1 %RH 
I²C/ RF24 

Low-cost, 

self-

developed 

Indoor wall 

(M1, M2 ) 

Temperature, 

relative 

humidity 

Environmental 

sensor  

-2050°C;  

0100 %RH 

±0.3°C 

±3% RH 

0.1 °C;  

0.1 %RH 
Zigbee 

Low-cost 

commercial 

Indoor wall 

(Z1, Z2, Z3, 

Z4 ) 

Temperature, 

relative 

humidity 

Environmental 

sensor 

- 10 50°C  

0100 %RH 

±1°C 

± 3% RH 

0.1 °C;  

0.1 %RH 
Zwave 

Low-cost 

commercial 

Door/ 

window  

Occupancy / 

motion 

Occupancy 

sensor  
0/1 – – 

Zwave / 

Zigbee 

Low-cost 

commercial 

Main AC 

panel 

Active power/ 

active energy 

AC energy 

sensor  

023 kW 

0  9999 

kWh 

±0.5% 

±0.5% 

0.1W 

1Wh  
RF24 

Low-cost, 

self-

developed 

PV-DC 

board  

DC voltage, 

DC current 

DC energy 

sensor 

0.05300V,  

0.02300A 

±1.0% 

±1.0% 

0.01V 

0.01A 

RS485/ 

Wifi 

Low-cost, 

self-

developed 

The main sensors and meters used in the IoT-BEMS deployment are summarized in 

Table 1. The table reports the measured variables, nominal range and accuracy, 

sampling period, communication interface, and low-cost category (self-develop or 

commercial sensor).   

 

Figure 12. Architecture of the Environmental – Occupancy – Energy Sensors   

Figure 12 illustrates the sensor’s architecture within the IoT-BEMS platform, 

comprising a power supply unit, a sensor module, a microcontroller that integrates 

algorithms for optimal sensor operation, and a wireless transceiver for data 

communication. 

To ensure operational reliability, sensor development follows four steps: (1) 
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hardware design, (2) algorithm development and firmware programming, (3) final 

assembly, and (4) packaging and functional testing.  

   

Figure 13. Development of Multi-sensors in our projects 

There are two types of multi-sensor, depending on the power supply (with/without 

a battery). Figure 13 illustrates the physical implementation (design, assembly, 

and package) of the multi-sensor node (measuring relative humidity, barometric 

pressure, and ambient temperature) used in our projects.  

 

Figure 14. Programing flowchart of RF24-based sensors  
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In Figure 14, the firmware architecture is standardized for all RF24-based sensor 

nodes. Figure 14.a describes the generic setup phase: importing libraries, 

declaring global variables and functions, configuring MCU I/O pins, initializing 

communications (Serial, I²C, and SPI) and starting the RF24 network. Figure 14.b 

details the main loop: reads measure data, checks whether a value change or 

timeout occurs, updates variables, resets the timer and sends a new data packet to 

the server/cloud. At the end of each cycle, the node enters a low-power or idle 

state (depending on the power supply), which limits energy consumption while 

keeping the network connection active. The flowchart simplifies firmware 

development and maintenance. It therefore fits the requirements of the proposed 

low-cost IoT-BEMS, allowing pre-configured sensor nodes to operate reliably. 

Experiment 1:  Developing wireless sensors with a battery power supply  

The experiment details how a battery-powered RF24 wireless sensor node was 

developed for building environmental monitoring. To achieve reliable data 

acquisition, sensors are deployed at designed locations to collect critical 

environmental parameters. The technical design needs to use low-power hardware 

(BME280 low-power sensor) and an optimal program (deep sleep, control 

sampling rate and sampling frequency). For instance, low-power mode is to put 

the sensor in sleep with a time sleep relating to a minimal sampling frequency. 

Table 2: Main technical requirements for Battery-Powered Sensor  

No Requirement Description 

1 Location Installed in critical areas such as around wall, doors and windows. 

2 Power Supply Minimal reliance on external electricity. 

3 
Energy Efficiency 

Minimize working frequency (nodes only activate for schedule or 

data transmission). 

4 Battery Lifetime A battery can supply power for the sensor's long-time operation. 

5 
Communication  

Support low-power wireless protocols (e.g., RF24, ZigBee …) for 

efficient data transfer and energy consumption. 

6 Data quality Maintain sensor precision and stability. 

7 Reliability and 

Maintenance 

Reliable operation on diverse environmental conditions; easy to 

replace or maintain. 
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In Table 2, basing on practical work, seven technical requirements for Battery-

Powered Sensors should be considered.  

Experiment 2:  Developing a RF24 wireless sensor with the Grid power supply 

This experiment presents the development of an RF24-based wireless sensor node 

powered by an AC power supply. From a design perspective, it is necessary to 

ensure a power supply for the controllers and the critical sensors that run 

continuously in the network. Therefore, these nodes must be located near the 

building's electrical grid. Enhancing the data sampling rate and implementing 

dynamic routing updates are key to improving network reliability. The sensor’s 

hardware includes a compact 5VDC power module to minimize design 

complexity; an Arduino Pro Mini 5V module serves as the central processing unit; 

and an RF24 transceiver module enables wireless communication (see Figure 15).  

Figure 15. Main components of Energy Metter  

 

Figure 16. Energy meter in VHH (RF24 Mesh-Network). 

In Figure 16, a wireless energy meter was installed in the VHH platform. The 

experiment design maintains devices over the long term by using modular 

hardware and an open library [51]. 
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2.2.2.2. Developing a wireless sensor network  

a. A wireless sensor network (WSN) architecture  

A wireless sensor network typically comprises sensor nodes, actuators, gateways, 

and data processing and storage centers. Sensor nodes collect data and transmit it 

through coordinator nodes to a gateway. From the gateway, data is forwarded via 

the Internet connections to the data processing and storage center. Users can 

manage and monitor the network in real time [49].  

 

Figure 17. Description of a RF24-Based Wireless sensor network  

Figure 17 illustrates an example of an RF24-Based WSN on real platforms, which 

integrates open-hardware (Arduino and RF24 modules), a Nano-Computer 

(Raspberry Pi), and open-source tools (OpenHAB and InfluxDB) for data 

collection, processing, and visualization. 

b. Network Topology 

Selecting a suitable network topology is essential for improving network performance 

regarding energy efficiency, frequency band, or deployment cost. Practically, there are 

typical topology types such as (Flat topology, Cluster topology). 

 

Figure 18. Flat topology (Mesh vs Tree) on HaUI’s platform [37]  
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Figure 18 shows the flat structures used to develop the self-developed RF24 

network on HaUI’s platform. This topology enabled simple, low-cost deployment 

with direct communication paths and minimal management overhead, suitable for 

small to medium size building sections. 

 

Figure 19. Cluster topology (Mesh vs Tree) on VHH’s platform [37] 

Figure 19 shows Cluster topologies implemented at VHH’s platform. An 

integrated system based on a hybrid WSN network, such as ZigBee (Xiaomi), Z-

Wave AEONTEC, Wi-Fi (ESP32/8266), and nRF24L01+ energy meters. 

Clustered organization improved bandwidth utilization and reduced energy 

consumption. The combining protocols allowed functional optimization across 

different building zones. From practical deployment, key factors requires to 

consider when selecting network topologies as follows: 

- Using multi-topology integration to meet various monitoring needs for the 

system’s flexibility. 

- Low-power networks (ZigBee, Z Wave, and nFR24L01+) to reduce 

maintenance. 

- Multi-protocol integration requires robust gateways and data center 

management. 

- Using hybrid networks increases reliability and potential system expansion. 

Experiment 3: Gateway Development 

In the RF24 network experiment, the gateway (node 00) collects sensor data and 

effectively sends control commands to each actuator node. Working as a bridge 
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between the RF24 and Wi-Fi communication networks, the gateway is necessary 

for maintaining data flow and system coordination.  

 

Figure 20. Development of gateway devices in real projects 

To ensure consistent network routing, the gateway must be supplied by an 

uninterrupted power source. Gateway devices should be sited in areas with 

reliable access to the electrical grid and robust communication links to network 

nodes. Figure 20, the gateway is based on a Wi-Fi module (ESP8266) and an 

RF24 module, which operates in the 2.4-2.5 GHz frequency band and supports 

125 channels, so providing flexibility and scalability for the network. 

Experiment 4: RF24-Flat topology development 

The topology networks enable real-time data acquisition and direct control of 

lighting and air-conditioning systems. This contributes to operational efficiency 

and enhanced user comfort. In this work, the topology is deployed following three 

steps [52], including  (1) Address format in network; (2) Routing Mechanism; (3) 

Installation 
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Figure 21. Description of RF24-Tree network configuration in a real project 

Figure 21 illustrates the RF24-Tree topology configuration implemented for the 

office. In the RF24 network, the address format uses a 15-bit octal (base-8) 

scheme as follows: 

- Router: address 00 is the Base node. 

- Lamps in the office: addressed 01-05 are first-level children 

- Other devices: addressed 011, 012, 013, 014, 015, 021, 025, and 031 are 

second-level child nodes. Each additional octal digit represents a deeper 

level in the network hierarchy. For example: Multi sensor nodes (01225, 

0225); AC controller nodes (Celling-Aircon: 01125, 0225) 

The network architecture allows for reducing routing complexity. However, in the 

topology, if a parent node fails, all its descendant nodes will lose connectivity. 

2.2.2.3. Communication technologies  

a. Wireless communication protocols  

Wireless communication technologies are essential enablers of efficient 

monitoring and control in modern buildings. They simplify the installation of 

sensors, actuators and controllers. In smart buildings, devices and end users 

interact remotely via wireless systems to receive and transmit control commands 
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in real time. When selecting a communication technology, several key criteria 

should be considered: low cost, low power consumption, ease of use, security, 

low interference, interoperability, scalability and accessibility to local markets 

[49]. 

 

Figure 22. Flow of the main radio frequency protocols [53] 

Figure 22 shows the standard RF protocols in IoT along with key characteristics 

such as frequency, range, data rate, power consumption and network structure 

[53]. In practice, buildings often use many different communication standards as 

users choose devices based on brand and application needs. Each protocol, such 

as ZigBee, Z-Wave, RF24, Bluetooth and Wi-Fi, has its own advantages. 

On the VHH platform, the system combines ZigBee, Z-Wave, Wi-Fi (ESP32), 

and RF24 to increase flexibility and support energy management. Open standards 

such as Wi-Fi, Bluetooth, and ZigBee have great potential for building 

management, but selecting the proper protocol remains difficult due to frequency 

conflicts, node count, cost, flexibility, and power consumption. 

b. MQTT protocol 

MQTT is an open connectivity protocol for the Internet of Things (IoT) messaging 

submitted to OASIS in 2013. It is a lightweight message transport for connecting 

IoT devices with limited network bandwidth. 
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Experiment 5: MQTT application in WSN’s communication  

MQTT is used for communication between gateways and sensor and actuator 

nodes. In the experiment, MQTT was applied to facilitate communication 

between gateway devices and sensor/actuator nodes. 

Figure 23. MQTT application communication in VHH’s project 

Practical implementation demonstrates that the MQTT publish/subscribe 

architecture provides efficient, flexible, and scalable real-time data management. 

In the system, an MQTT broker is installed on the Nano computer to handle all 

communication. Each MQTT message consists of four main parts: information 

about the system layer, a node that sends data, node that receives data and the type 

of exchanging message. 

 

  

Practical observations highlighted that careful hierarchy design is essential for 

maintaining system clarity, scalability, and ease of maintenance as the network 

expands.  

Figure 23 illustrates the structure of MQTT application within the deployed 

VHH’s platform. Sensor nodes act as publishers, sending environmental data 

(such as temperature, humidity, and light intensity) to subscribed topics on the 

MQTT broker. Simultaneously, gateways subscribe to command topics then send 

to actuator nodes.  

Layer network/sending node/receiving node/message type 
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2.2.3. Data Visualization and Users interaction   

This work used InfluxDB, a time series database suitable for data management, 

Grafana facilitates data querying, visualization, and alerting. Multi-sensor data is 

combined for data analyzing reliability [53]. The IoT-BEMS platform provides 

data to operate Buildings through a user interface or via a Web service.  

Experiment 6: Energy Data analysis in VHH’s platform 

The energy consumption are often linked to the user’s behaviors.  

Figure 24. Correlation between consumption and occupancy in VHH’s office 

Figure 24 shows that the Dispenser is set to operate according to the working 

schedule of the day. The lighting system will turn off at the end of working hours, 

during lunch break. When analyzing carefully based on other additional data from 

the system, this action can be identified in more detail, specifically: 

- On September 9, 2020, 11:30-13:00, the user turned off the lighting system. 

However, the door and motion sensor value indicated no-one in the room. 

- On September 10, 2020, 11:30-13:00, the lighting system was off but the 

air conditioner was still on. The door and the movement sensor show that 

the user was absent. 
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Figure 25. Correlation of HVAC operation vs environment conditions in VHH’s office 

Figure 25 shows that the HVAC is operating during working hours, and the heat 

distribution in the room. The window (where the TiZ4 sensor is located) absorbs 

a lot of heat, so the temperature is always higher than the other in room areas. 

Experiment 7: Environment Data analysis in VHH’s platform 

Environment conditions effect to how users operate electrical devices in the office.  

Figure 26. Description of indoor-Temperature distribution by seasons 
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In Figure 26, in summer, room has high temperature with high median and IQR 

of indoor temperature, which easily triggers HVAC to cool more. However, in 

winter, it has the lowest temperatures, with little variation, low median and narrow 

IQR. Spring/Autumn has average temperatures, moderate dispersion. Summer 

and spring have very high outliers’ points, possibly due to door opening and 

closing, high occupancy or set-point temperature. 

 

Figure 27. Description of indoor-humidity distribution by seasons 

Figure 27 shows that Summer median humidity increases and has large variations, 

creating a feeling of heat even though the temperature is not too high. Winter 

humidity is lower with a low median but large variations, so there are times when 

the air conditioner needs to be turned on to dehumidify. Spring-Autumn session 

is more balanced with average humidity, but there are still outliers by fluctuating 

weather. 

Experiment 8: Correlation data analysis in VHH’s platform   

Correlation between sensor data allows for the creation of virtual sensors or data 

compensation for missing variables. [36]. Figure 28 shows the data correlation 

between temperature sensors and consumption during 1 week in August 2020. 

The red color in the figure represents a strong correlation (correlation value>0.9) 

between variables. The correlation between Total power and TiZ3 and HVAC 

power is relatively high (with correlation values of 0.7 and 0.93, respectively). 

This indicates that pair [TiZ1, TiZ2] can be used to compensate for the missing 

data of TiZ3 and TiM2; [Total, TiZ3] to compensate for missing HVAC data. 
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Figure 28. Correlation temperature and consumption data in VHH’s platform  

Experiment 9: Fault sensor detection in VHH’s platform   

Data quality assessment and error detection are always challenges in IoT sensor 

systems. Some problems affect the accuracy of error warning and system quality 

diagnosis. Many errors look like sensor failures, but in fact they are time shift 

errors, temporary connection loss, sensor stuck-at constant. Abnormal data are not 

caused by sensor errors but by sudden changes in the real environment. This study 

proposes a method for data quality analysis based on multi-sensor data correlation 

and system operating context. For example:  

 Check for sudden large jumps in data values and compare the anomalies 

with real environmental data. 

 Use correlation between sensors to detect sensors drifting away from the 

sensors in the group to diagnose faults and compare context over time. 
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Figure 29. Jump events of temperature values during HVAC ON and Door OPEN 

Figure 29 shows two unusual events of temperature value increase and decrease 

of sensors (TiZ1, TiZ2, and TiZ3). However, the measured data have the same 

up/down trend relating to status of air conditioner and door. This trend is 

reasonable, there is no error from the physical sensor 

 

Figure 30. Correlation pair sensors (TiZ1–TiZ2, TiZ1–TiZ3, TiZ2–TiZ3) in one-week 

BEFORE, DURING, AFTER from (10/05/2021-30/05/2021) 

Figure 30 shows that during the week (May 10, 2021-May 16, 2021) the TiZ1 

sensor behaved abnormally, deviating from its correlation with TiZ2 and TiZ3. 
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Figure 31. Correlation pair sensors (TiZ1–TiZ2, TiZ1–TiZ3, TiZ2–TiZ3) in one-week 

BEFORE, DURING, AFTER from (17/05/2021-06/06/2021) 
 

Nevertheless, in Figure 31 the following weeks, this sensor was strongly 

correlated with the other two sensors. The TiZ1 sensor could not damage, but only 

temporarily faulty. The two sensors TiZ2 and TiZ3 maintained stable values. 

Experiment 10: Lighting system maintenance in VHH’s platform   

Most electrical equipment often operates until it fails or has problems. This factor 

received little attention, however is prevalent in many buildings. In real Buildings, 

most lighting systems are old and designed over ten years, no changes until fault. 

The working time data of electrical devices data could support users’ plans for 

maintenance devices (such as repairing or replacing them) on time.  

 

Figure 32.Working time of Led groups in a year. 
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In Figure 32, users could find out that group Led1 has lowest performance while 

groups Led2 and Led4 have the best. By monitoring lighting system, users can 

calculate time to replace Led.   

2.2.4. Buildings energy services 

The data-fusion layer described above aggregates measurements data into 

meaningful information about the building state. From this foundation, the IoT-

BEMS can provide the following energy services: 

Surveillance services. Real-time access to indoor environmental conditions, 

energy consumption, PV production, equipment status, sensor power status, and 

door/window openings. These data are presented on dashboards for display on 

smartphones and PCs, enabling users to respond to abnormal situations quickly. 

Maintenance services. Besides fixed maintenance schedules, measurement data 

enables early fault detection and the issuance of warnings. This supports 

predictive maintenance and helps users plan repair and replacement actions more 

accurately. 

Control services. Control strategies based on fused data (HVAC, lighting and 

plug loads) can improve building performance while maintaining user comfort. 

Data analysis and reporting. Historical data support data-driven decision-

making, improve energy management, and provide indicators for broader energy 

transition initiatives. 

In the next section, we investigate data-quality methods to ensure that these 

services operate reliably on the low-cost IoT-BEMS platform. 

2.3. Data quality assurance Framework 

In a low-cost IoT-BEMS platform, data quality is a prerequisite for reliable 

operation of energy services. Data with missing samples, spike noise, drift will 

cause errors to propagate to visualization, data fusion, load/PV forecasting, and 

control, thus reducing the effectiveness of nZEBs.  
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The direct relationship between data errors and the reliability of control strategies 

has been emphasized in studies on building energy performance [30] . Therefore, 

this thesis proposes a framework to ensure data quality at two levels:  

 Level 1: At single-sensor level [40];  

 Level 2: At sensor network level [54], [39], [55]. 

Experiments 1–3 in section 2.3.3 validate the effectiveness of the level 1, while 

experiments 4–6 in section 2.3.4 validate the level 2. The latter two quality-assured 

datasets are used directly for building energy services and case study evaluation in Part 3. 

2.3.1. The state of the art   

Energy analysis, forecasting, and control models are only reliable when built on 

complete and accurate measurement data. In the PV systems, enhanced data 

processing and verification are prerequisites for improving the reliability of 

performance analysis and system robustness [56].   

Recent literature reviews also confirm that low-quality data is the main cause of 

performance degradation in sensor-based monitoring systems and Machine 

learning models [57]. 

For building data, dataset characteristics such as sequence length, sampling 

frequency, diversity, and especially data quality need to be strictly considered 

when building models for energy services [58].  

At sensor network level, systematic reviews of sensor data quality have pointed out 

typical errors in reliable monitoring including: missing values, spikes/outliers, long-term 

drift/bias, stuck-at, and network-level errors such as packet loss bursts, latency/jitter, and 

time misalignment [50], [57]. These errors break the integrity and temporal structure of 

the data – the foundation of energy optimization and forecasting models. 

Data errors in low-cost IoT-BEMS often come from the following sources: 

 Sensors’ hardware: low-cost sensors are sensitive to manufacturing errors, 

aging, environment condition, or hardware design. LCS studies also highlight 

the heterogeneity of quality between manufacturers and the need for periodic 
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calibration/maintenance [59]. 

 WSN transmission network with packet loss, transmission delay and clock 

skew cause time series data errors [59]. 

 Data integration when merging multiple sources in IoT-BEMS, heterogeneity 

in measurement standards/semantics and representations between devices can 

create data inconsistencies [60]; Multi-sensor data often have different 

sampling frequencies, so consistent resampling–time alignment is needed [61], 

[62] otherwise it will degrade the consistency of the time series. 

Current research is developed in two directions corresponding to two levels of 

quality assurance. At the single sensor level, many works proposed low-cost 

sensor calibration using ML and virtual sensing to reduce measurement bias and 

physical element dependence [40]. At the sensor network level, many studies 

apply error handling standards according to international standards, typically IEC 

61724 for PV data to eliminate gaps, duplicates and false values [63].  

The Machine Learning with data fusion for low-cost sensors is considered a 

promising solution for outlier detection and real-time data compensation [39], and 

has been extensively used for outlier detection based on forecast errors [55] as 

well as data compensation in computationally constrained environments [64].  

In the context of PV/load forecasting, probabilistic models such as GPR and deep 

learning models (CNN-LSTM) have been proven effective and can be integrated as the 

core of data compensation/uncertainty estimation in online operations [64], [65]. 

Existing studies on data quality indicate that it is rare to address both levels in a 

unified framework. However, in low-cost IoT-BEMS deployments for buildings, 

these two levels need to be tightly coupled. Poor measurement integrity at the 

source will inevitably affect network level analysis, while errors can distort sensor 

readings. This motivates the development of a two-level data quality (DQ) 

framework in this study.  
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Table 3. Classification of data faults in low-cost IoT-BEMS and considered faults 

in the thesis. 

Fault group  Fault type Description 
Example in IoT-

BEMS 
Considered? 

Missing data 

 

Block missing 
Consecutive missing 

samples  

RF packet loss, 

node freeze 
✓ 

Scatter missing 
Randomly missing 

samples  

Random network 

interference 
✓ 

Outliers/ 

Spikes 
Spike/ impulse 

Short-duration & 

large-amplitude 

anomalies 

ADC noise, 

transient 

transmission error 

✓ 

Drift/ Bias 
Linear/ 

nonlinear drift 

Long-term gradual 

deviation 

Sensor aging, 

environment effects 
X (baseline 

handling) 

Stuck-at  

Constant 
Constant value 

Sensor output stuck at 

a fixed value 

Firmware fault, 

sensor failure 
X (baseline 

handling) 

Time 

misalignment 
Delay/ shift 

Timestamp delay/ 

time shift 

Gateway clock 

offset, latency 
X (baseline 

handling) 

Inconsistency 

multi-node 

Cross-sensor/ 

cross-system 

correlation 

Missing data 

requiring correlation 

exploitation 

Correlated PV 

stations/ zone 

sensors 
✓ 

Table 3 summarized from systematic reviews on sensor/WSN data quality and 

fault types [50], [57] and from energy data quality (Loads/PV) studies [56], [63]. 

The (✓) mark indicates the subset of faults observed and quantitatively evaluated 

in the thesis.  

This study focuses on errors that directly affect the data series and the forecasting 

model (block or scattered data loss, outliers, and inter-sensor inconsistencies). 

Long-term errors such as sensor drift, stuck values, or time drift are assumed to 

be addressed by baseline calibration and periodic maintenance, so they are not 

analyzed in detail. The classification is used in the subsequent step to design the 

data quality framework. 

2.3.2. Methodology  

In this study, we focus on tools that support non-expert users, who are essential 

in ensuring BEMS data quality. The data quality assurance framework is built 

based on the characteristics of low-cost IoT-BEMS systems and data errors 

observed in real deployments. The proposed Data Quality Assurance pipeline with 

two level of quality assurance is described as follows: 

(Level 1) At the single-sensor level: focuses on reducing errors at the 
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measurement origin, including:  

(1) Sensor calibration during development to achieve target errors;  

(2) Improving box design to maintain stability in harsh environments;  

(3) Adding virtual/soft sensors for reducing missing and drift due to physical 

components. 

(Level 2) At the sensor network level: handles errors arising at the network and 

post-collection data levels. This level implements the three-step pipeline:  

Detection, Correction/Imputation, and Validation in an online solution. Machine 

learning models (MLR, GPR online) are used to detect missing, spike, drift, and 

inconsistency between nodes. With online models, the computational resources 

(CPU/RAM) are reported to demonstrate real-time feasibility.  

Overall, (Level 1) ensures the measurement accuracy of input data, while (Level 

2) ensures the integrity, synchronization, and consistency of data in real-time 

operations. 

Estimating errors factors are often used including RMSE, MAE, and R2 

[66][67]. 

2.3.3. Single Sensor level- Experiments  

2.3.3.1. Sensor calibration & validation  

An emerging trend among users is the self-development sensors using Arduino 

platforms combined with various open modules [45]. The study aims to provide a 

structured process with detailed steps to assist users in developing their 

customized sensor solutions.  

Experiment 1: Testing a self-develop DC meter vs reference instruments 

In this experiment, we presented sensor estimation process in range 0-5A DC 

current and 0-60V DC voltage.  Materials for experiment shown in Figure 33 

including:   

 Standard signal generator are a Generator DC Current/Voltage 
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(Alimentation continue 0-100V 0-60A 6000W) and Load 5A. 

 Reference devices: Keysight Digital Multi-meter 34450A, 5 ½ Digit, 

OLED Display; Agilent 34450A Digital Multi-meter.  

 Power supply (15V) was from DC power supply device of ELC - AL936N 

 

Figure 33. Devices for calibration experiment 

The estimating sensor error process applied for testing in two parts: 

(1) Testing with DC current part:  

 Current input LTS-25P was supplied by Generator DC Current/Voltage; 

Value of generator current (Iin) was measured by Agilent 34450A Digital 

Multi-meter;  

 Value of current sensor (Iout) was recorded on raspberry Pi. Result is RMSE 

of Iout (1-5A) = 0.7%; 

(2) Testing with DC voltage part:  

 Voltage input LV 25P was supplied by Generator DC Current/Voltage;  

 Value of generator voltage (Vin) was measured by Keysight Digital Multi-

meter 34450A, 5 ½ Digit, OLED Display;  

 Value of voltage sensor (Vout) was recorded on raspberry Pi. Result is 

RMSE of Vout (0-63V) = 0.97%. 
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Figure 34. Block diagram of DC meter module 

 
Figure 35. Processing of DC 

meter calibration 

The diagram of the DC meter illustrated in Figure 34 and the processing of DC 

meter calibration in Figure 35. In the experiment, we used high-precision devices 

to calibrate the DC meter module.  

2.3.3.2. Robust design against environment (packaging) 

Experiment 2: Testing a self-develop sensor in high humidity environment 

condition and improving the protective box design  

In this experiment, the BME380 multi-parameter sensor, developed by the team, 

was tested by comparing its measurement data with that of the AEOTEC 

MultiSensor 6 sensor. As presented in [36], the self-developed BME280 sensor 

showed a 15% error in humidity values when the room humidity exceeded 80%. 

The first version (V1) of humidity sensor met the target error under RH<80%. In 

a higher RH environment, the sensor error increased and a persistent bias appeared 

due to a humid micro-climate created in sensor’s protective box.  

To reduce moisture condensation, the box was redesigned with the following 

changes: (1) increasing the air gap and area to increase ventilation; (2) changing 

the position of the sensing head to avoid condensate from directly contacting the 

sensing surface (see Figure 36). 
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Figure 36. Description Self-develop sensor & commercial sensor 

In one day experiment data at a high humid (>80%), the new version achieves 

better accuracy with error RH under 5% deviation comparing with Multi-sensor. 

2.3.3.3. Virtual-sensor to reduce technical issues 
 

By combining data, it is possible to infer critical information without an increase 

in physical sensors. Virtual-sensors are developed basing on mathematical 

equations and measure data to reduce number of physical sensors. In this study 

[68], making a charging battery virtual-sensor to mitigate technical risks. 

Experiment 3: Virtual sensing (State of Charge without charging sensor) [68] 
 

The experiment on greenhouse platform presented how calculate State of Charge 

(SoC) while lacking measured data in charging battery mode. Our study in [68] 

identified SoC based on relationship of charge/discharge mode with battery 

voltage changes. Therefore, the study proposed a function D(t) to observe the 

duration time of charging/discharging battery modes: 

D(t) = {
n,                VB(t) − VB(t − 1) < 0  with  n > 0 

−n,                VB(t) − VB(t − 1) > 0,
  (2.1) 

In discharging mode, we have Pbat=Pdischarge  

Pdischarge = Ploads + Ploss−discharge − PPV − PAC_in       (2.2) 

Eloss = ∑ Ploss−discharge(tn) × (tn − tn−1)
end−discharge
n=start−discharge   (2.3) 

In charging mode, we have Pbat=Pcharge  

Pcharge =  Ploads+Ploss−charge - PPV − PAC_in      (2.4) 

The experiment data includes start-time, stop-time, Ci , Cend -  Corresponding with 

battery capacity at initial, endpoint with (Ci = Cend).  

For three-day data, assume that the losses were constant, Ploads(t) is power of total 

loads at time t.  
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Eloss = EPV + EGrid − Eloads             (2.5) 

Based on equations [1–6], the state of charge were identified. 

 SoC(tn)=SoC(t(n-1))+Pbat(∆t)                      (2.6) 

In this section, the experiment demonstrates a virtual SoC sensor based on Eq. 

(2.6) to replace the physical sensor. 

 

Figure 37. Description relationship of State of charge, Pump, and PV generation  

Figure 37 illustrates the three-day trend of power flows (PV generation, Pump 

power and State of Charge) without physical charging battery sensor installation. 

In the next section, we will present a promising approach sensors network for data 

quality. 

2.3.4. Sensor Network level - Experiments  

2.3.4.1 Introduction  
 

In sensor network, the evaluation and calibration of individual sensors become 

complexity and impractical. Prediction Models based machine learning 

techniques are increasingly valuable tools for enhancing quality building 

management [39]. Practical experiences highlight that datasets in sensor networks 

are crucial for ensuring system reliability. However, selecting input features and 

dataset sizes will effect to prediction errors if not properly managed. 
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Figure 38. Deployment workflow of an online data compensating model 

Figure 38 shows the second level of the data-quality framework, which handles 

missing or faulty measurements at the network level. When a data-loss event occurs, 

the system detects missing timestamps and sends a query to the compensation database. 

A compensation model, trained on neighboring sensors and historical data, then 

estimates the missing values. The estimated points are stored in an InfluxDB database 

and later merged with the measured data for visualization, analysis and control. 

This workflow illustrates how data quality is maintained in practice on a low-cost 

platform. Data losses and sensor faults are processed automatically by the IoT-

BEMS backend. Low-skill users do not need to intervene, while the system still 

preserves a consistent time series for analytics and control.  

2.3.4.2 Experimental setup in VHH’s platform 

The test case is a low-cost IoT platform in the Vietnam-Korea Vocational college 

of Hanoi (VHH). The computer used for experiments is a general one in the 

offices with configured CPU of Intel Core i7-8550U 1.80 GHz. Two months of 

measured data (July and August 2020) with a 10-minute timestamp were used in 

real experiments. Table 4 shows measured data symbols in the experiments.  
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Table 4. Symbol of variables used in Experiments 

No Variables Definition  

1 TiM2 Temperature at node Mi02 

2 TiZ1 Temperature at node Z01 

3 TiZ2 Temperature at node Z02 

4 TiZ3  Temperature at node Z03 

5 Tout  Outdoor temperature from a web service. 

6 HVAC  Value at point k of HVAC power in the office  

7 PTotal the total power consumption in the office 

8 PVi with (i=1, 2, 3,4) The power of the ith PV system nearby. 
 

 

Figure 39. Description diagram sensor network of testbed in VHH 

Figure 39 shows sensor types and locations in real platform. There are 2 energy 

meters (measuring sub-loads: HVAC and Total). Among some multi-sensors, four 

multi-sensors (Z01, Z02, Z03, and Mi02) placed on wall surfaces of building.   

2.3.4.3 Machine learning for abnormal data detection & compensation  

Nevertheless, practical challenges, such as computational latency and data 

availability, must be carefully considered under source-constrained conditions.  

The literature [69], [70] indicated that Gaussian Process Regression (GPR) is a 

Machine Learning model for effectively managing data uncertainty. However, 

practical research on this model still has gaps in terms of limited-source 

computation and diversity data.  
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Main objectives: 

- Propose efficient online machine learning models to detect different data 

faults and compensate for data in the IoT-BEMS platform. 

- Focus on computational performance and available data. 

a. Methodology  

a.1 Multiple linear regression (MLR) [71] 

“Multiple linear regression is a generalization of simple linear regression to the 

case of more than one independent variable, and a special case of general linear 

models, restricted to one dependent variable”.  

The basic model for multiple linear regression is: 

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + 𝛽2𝑋𝑖2 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 + 𝜀𝑖   (2.7) 

Where: Each observation i = 1, ... , n.  

In formula above, we consider n observations of one dependent variable 

and p independent variables. Yi is the ith observation of the dependent variable, 

Xij is ith observation of the jth independent variable, j=1, 2, …, p ; βj represent 

parameters to be estimated, and εi is the ith independent identically distributed 

normal error. 

a.2 Gaussian process regression (GPR) – Online model [72] 

The GPR technique has several significant advantages over other methods due to 

providing a precise measurement with quantified reliability. However, the GPR is 

quite complex compared with other regression models, so its computational speed 

is limited. We proposed experiments to estimate the suitability of the GPR 

technique for the data compensation models, which could run online.  

GPR is a statistical approach approximating input-output mappings from 

empirical data in prediction models. A Gaussian process regression equation: 

                ( )y f x                 (2.8) 

Where: y  : observed scalar output.  

https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Special_case
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1: Df   : Latent Regression function. 

            1Dx   : Input feature. 

            2~ 0,   : Gaussian measurement noise with zero mean and standard 

deviation  . 

A Gaussian Process function is: 

  ( ) ~ ( ), ,f x x k x x    , and   2~ ( ),y X K I     (2.9)   

Where: ( )x : Mean function (often set to 0). 

               ,k x x : Covariance (kernel) function with , Dx x  (input vectors) 

             n DX   : Training - input matrix whose i th row is ix . 

               1

1, , n

ny y y    : Training outputs stacked as a column vector. 

           n nI  : Identity matrix. 

 ( , ) , ,n n

ij i jK k X X K k x x        (2.10) 

Because updating a batch GPR requires re-inverting 
2+ K I  with  3n  cost per 

update, an Online GPR is preferred. 

RBF kernel function use in Experiments: 

2

2

2
( , ) exp

2
f

x x
k x x 

 
   

 

‖ ‖
             (2.11) 

Where: , Dx x : Input vectors 

             2 0f  : Signal variance (amplitude of the latent function); 2( , ) fk x x   

            0 : Length-scale (smoothness) – (If Length-scale value is small, the 

function varies rapidly; If Length-scale value is large, the function varies slowly). 

By Equ. (2.8)  Equ. (2.11), the Gaussian process model is computed and fitted 

to the training set using maximum log likelihood method to tune the hyper-

parameters (Signal variance and Length-scale).  
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b. Experimental results  

Experiment 4: Evaluating MLR and GPR techniques for compensating 

temperature data  

In this experiment, two models, GPR and MLR, are for room temperature 

compensation. The purpose is to compare performance of the GPR and MLR 

technique for online data compensation models.  

Data collection: Ten day data in Aug, 2020 is separated in (Train: 8 days)/ 

Validate: 1day/ Test: 1 day). 

Data input: TiZ1, TiZ2, and TiM2lag1, time features (sin/cos of hour and day). 

Data output: compensated PV1 power. 

In this experiment, Temperature data at Z01 and Z02 node is model’s input. The 

compensation temperature point of node M02 is the model’s data output. In data 

preprocessing, time features (Trend features) were added in dataset to improve 

model quality.  

In this experiment, GPR with an RBF kernel vs trend and seasonal components, 

trained and test, then producing sequential forecasts on validation and periodically 

refitting every 1 hour using a 72 hour window. An alpha of 3e-5 improves 

numerical stability. Estimators (RMSE, MAE) are used to estimate on fault region. 

This work injects data faults into the validation set to simulate fault data and 

evaluate model robustness. Fault data imputation simulation based on injecting 

missing data in validation dataset (in Table 5): 

 Block missing:  

(1)  NaN: Set NaN for TiM2 validation faulty in specific range (with k points). 

Number of points in block equal k points. In this experiment, k equal 

approximating 30% total number of samples in validation dataset. 

(2)  Spike: create noise in the block. With scale of 3, each point in the block is 

randomly "mutated" by 3 times the standard deviation. 
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 Scatter missing: Set NaN for k discrete points in TiM2 validation data.  

Table 5. The results of data compensation error on validation TiM2 dataset 

Type of missing data of sensor TiM2 Estimators (°C) GPR  MLR  

Block missing 

 

30%) 

NaN  
RMSE  0.48 1.4 

MAE  0.41 1.38 

Spike  
RMSE  0.35 1.39 

MAE  0.14 1.38 

15% 

NaN  
RMSE  0.05 1.11 

MAE  0.04 1.1 

Spike  
RMSE  0.022 1.15 

MAE  0.018 1.16 

Scatter missing  

30% 
RMSE  0.32 1.35 

MAE  0.17 1.27 

15% 
RMSE  0.36 1.63 

MAE  0.19 1.47 

The table above shows that across all data-loss scenarios (30% block and 30% 

scatter, and 15% block and 15% scatter), the GPR model consistently has lower 

RMSE and MAE than the MLR model. 

 For the case of 30% block missing and NaN data, the GPR error (RMSE = 

0.48; MAE = 0.41 °C) is still much lower than MLR (RMSE = 1.4 °C; 

MAE =1.38 °C). When the reduced loss rate data are up to 15%, GPR 

model error drops rapidly (RMSE = 0.05 °C; MAE = 0.04 °C). In contrast, 

MLR model error remains above 1 °C.  

 For Spike block missing, GPR still gives very small errors (RMSE is only 

about 0.35 - 0.022 °C, MAE = 0.14 - 0.018 °C), while MLR fluctuates 

around 1.15-1.39 °C. This shows that GPR not only compensates well when 

the data are NaN but also “flattens” spikes, keeping the error at a very low 

level even when large-amplitude noise appears. 

 For scatter missing, GPR continues to maintain lower error (RMSE = 0.32-

0.36 °C compared to 1.35-1.63 °C for MLR). 
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Figure 40. Comparison performance of MLR vs GPR on ten days dataset with 30% 

Block-missing data (NaN)   

 

Figure 41. Evaluation imputation performance with 30% Block-missing data (NaN) 

Figure 40 shows performance of MLR and GPR model for data compensation on 

ten days. Figure 41 presents clearly by indicating missing points, missing region 

and confident. GPR present a better performance than MLR in test and validation 

steps. In summary, GPR provides better, more stable data compensation than 

MLR in both block and scatter data losses, especially when the data loss ratio is high. 

Experiment 5: Evaluating the GPR model's computational performance. 

In this experiment, we propose a method for compensating indoor temperature data 

using online models. The primary objective is to balance computational performance 

(on training time) with effective data compensation.   

The study in [73] indicated that training data comprising a half-week to one-week data 

are for feasible online data compensation models. In the study, we investigate the 

models' data compensation horizons. Two models (Model 1 and Model 2) were trained 
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using different dataset sizes collected in July 2020, respectively. Then. a 2.5-day dataset 

comprising 350 samples collected was used to evaluate performance of models. 

Table 6. Estimation factors of the compensation of TiM2 data model 

Model with 2.5-day test dataset Model 1  Model 2 

 

 

TiM2 

RMSE (°C) 0.18 0.22 

MAE (°C) 0.49 0.5 

R2 0.984 0.986 

Training Time (second) 3.25 19 
 

In Table 6, the estimated indoor temperature values were compared against actual data 

and both results are summarize with both RMSE, MAE and R2 values.  

 With a 2.5-day test dataset (350 samples), both models achieve good accuracy: 

RMSE =0.180.22 °C, MAE = 0.490.50 °C and R² = 0.9840.986, which is 

acceptable for building energy management.  

 For Model 1, training time is about 3.25 s and 19 s, confirming that both can be 

retrained online, but Model 1 is better suited for near-real-time updates on 

resource-constrained devices. 

Figure 42. Estimation and observation of indoor temperature of model 1 
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Figure 43. Estimation and observation of indoor temperature of model 2 
   

Figures 43 and Figure 44 further show that, over a 2.5-day loss period, the 

compensated temperatures closely follow the measurements, indicating that the 

proposed compensation approach remains reliable over several days of missing data. 

Experiment 6: The GPR data compensation models of local PV systems. 

The Gaussian Process Regression is for developing online photovoltaic (PV) 

power compensating models [73]. The study investigated the development of a 

compensated data model for PV generation based on the correlation of multiple 

PV systems.  

Data collection: The 1-week dataset is split into Train: 4 days, Validation: 1 day, 

and Test: 2 days. PV data are time-aligned and resampled at 10-minute intervals. 

To simulate data loss, missing blocks are created in the daytime interval [06:00–

18:00], with block lengths of 6–12 samples. 

Data input: PV2, PV3, two time-lagged (1hour) values of PV1 (lag1, lag2), and 

time features (sin/cos of hour and day). 

Data output: compensated PV1 power. 
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Figure 44. Correlation generation data of four PV systems 

Figure 44 shows the strong correlation between PV1 and the PV2–PV3 stations 

over the selected 1-week period (data collected in January 2022). The final model 

is refitted over the entire Train before the Validation/Test prediction. When 

compensating for each missing block in Validation/Test, the model only uses data 

before the start of the block (history) to learn. This reflects the real-world model 

deployment (no looking into the future). 

 

Figure 45. GPR compensation data PV1 (sample rate 10min) 

Figure 45 shows the data compensation results at some missing data points in a 

week (Train/Validation/Test). The result on Test reported at the masked points 

has a Coverage value of 95.1%, showing that the model is reliable. The error on 

Test MAE is 0.347, RMSE is 0.878, and R2 is 0.976, showing that the model 
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matches the points accurately. This confirms that the model reproduces the true 

PV1 power and is sufficiently robust for practical data-compensation applications. 

2.4. Adaptation of the IoT-BEMS platform to Local Conditions  

In developing the IoT-BEMS system, the conceptual foundations and 

architectural framework were initially derived from a large-scale IoT platform in 

France that relied mainly on commercial sensors. To deploy in Vietnam, several 

adaptations were required to account for local conditions. From the research 

experiences in France, projects in Vietnam were designed to priorities 

affordability, flexibility, and practical applicability. Instead of deploying high-

cost commercial sensors, the systems are implemented by integrating low-cost 

commercial and self-developed devices. This integration was validated through 

experimental activities to ensure the platform's interoperability, reliability, and 

scalability under local constraints. The adaptation process focused on reducing 

hardware costs and maintaining data quality, system robustness, and user 

engagement. Therefore, this study provides valuable insights to scale the IoT-

BEMS infrastructure in Vietnam. 

2.5. Conclusions of part 2 

In this part, the work proposed a highly interactive, modular, heterogeneous IoT 

architecture (RF24/ZigBee/Z-Wave/Wi-Fi, Raspberry Pi, time-series database, 

and Real-time monitoring). Based on the implementation of real projects using 

low-cost sensors and open-source platforms: 

 Cost initial infrastructure cost ≤ a few thousand USD. 

 With no-code, pre-configured templates and “step-by-step” instructions, 

basic skill users can deploy in one day for a standard room such as VHH's 

testbed, schedule maintenance once a month, and the system automatically 

warns when data is missing or incorrect.  

This confirms the low-cost, low-skill friendly platform, suitable for deployment 

conditions and easy to expand (many rooms/hundreds of measuring points).   
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The proposed pipeline (including system design, data management and 

configuration, and a two-level DQ insurance framework) enables reproducibility 

and maintenance in real-life operations.  

Overall, part 2 has provided a practical roadmap for designing an IoT-BEMS 

platform with reliable data. In the following part, we will focus on a case study to 

apply the platform to evaluate users' interventions and feedback, as well as 

energy-efficiency strategies. 
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Part 3. The implementation of IoT-BEMS platform – A case study 

3.1. Overview 

In this part, we present the application of IoT techniques for managing various 

subsystems in an actual building. First, we introduce the experimental platform 

integrated with IoT technologies. Subsequently, we provide insights into the 

electrical devices within the testbed environment.  

The study explores how technology and data can be leveraged to implement 

energy efficiency solutions. The correlation analysis of environmental conditions, 

user behaviors, and energy provides a foundation for developing energy services 

to reduce overall energy use and electricity costs [74]. 

Although the study was deployed on a small-scale platform, the findings from this 

case study can serve as a basis for scaling up to larger applications through the 

widespread use of IoT devices [75]. 

In addition, it is important to note that scientific studies in Energy Systems have 

widely adopted a small-scale validation strategy. Thus, this research provides a 

scalable foundation for broader real applications. 

3.2. Introduction VHH’ project  

This is a project under the cooperation between the Vietnam-Korea Vocational 

College of Hanoi City (VHH) and the University of Science and Technology to 

develop an experimental platform for research purposes.  

In the platform, building services included the following:  

(1) Monitoring building status;  

(2) Maintenance devices (replace old-date lighting devices, sensor outage battery);  

(3) Automatic control (schedule and energy-saving scenarios) for Water dispenser, 

Lighting system (with 24 units of Lamp) and Air conditioner (12,000 Btu);  

(4) Access database and analysis. 
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Figure 46. Description location PV system in VHH [36] 

Figure 46 is an overview of the VHH building, which is responsible for the energy 

strategy experiments with a PV system a Hybrid Inverter 5 kW 1 phase with 04 

lead-acid battery work in series [36].  

 

Figure 47. Setting up an IoT experimental platform including location of sensor nodes, 

air conditioner and lighting controllers, and energy meters [36] 

Figure 47 shows an IoT experimental room layout in VHH for real-time 

monitoring and control using wireless sensors and controllers network. The 

network integrates multi-communication protocols (RF24, Z-Wave, ZigBee, and 

Wi-Fi) via a Raspberry Pi-based local server, enabling real-time data collection, 

energy monitoring, and HVAC control within testbed. 
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Table 7. IoT Network Configuration for the testbed 

Component Function / Description 

01 - Central Server 

Raspberry Pi 3 

Acts as a local server and data hub; manages three 

gateways (RF24/Wi-Fi, Z-Wave, ZigBee) and stores 

real-time sensor data. 

01 - RF24 / Wi-Fi Gateway 

Transmits measured data from custom energy meters 

to the server and sends control commands back to 

actuators. 

01 - AEOTEC Z-Wave Stick 
Interfaces with Z-Wave multi-sensor nodes for indoor 

environmental data acquisition. 

01 - Xiaomi ZigBee / Wi-Fi Hub 
Connects ZigBee sensors for temperature, humidity, 

and door status monitoring. 

02- ZigBee Sensors 

Xiaomi Multi sensor (T, RH) 
Measure indoor temperature and relative humidity. 

03- Xiaomi Door Sensor Detect open/close state of doors and windows. 

04- Z-Wave Sensors 

AEOTEC Multi sensor 6  

Monitor multi-environmental parameters ((T, RH, 

Light, Motion,…). 

01- RF24 one phase Energy Meters Monitor power consumption of the water dispenser. 

01- RF24 four-phase Energy Meters Monitor multi-channel electrical consumption  

02- Wi-Fi Sonoff 4CH Pro Control 8 LED lighting channels  

01- Broad-Link SP3 Mini  Control the water dispenser power supply. 

01- Wi-Fi Controller Enables remote and automated HVAC control. 

 

 

Figure 48. Description a Control Users Interface in VHH platform 
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Figure 49. Description a Dashboard Users Interface in VHH platform 

Figure 48 and Figure 49 present Users Interface for control lighting and Air 

conditioning, and monitoring energy consumption. Users could interact with IoT 

platform using laptop or smartphone.   

3.3. Deployment of  IoT-BEMS platform for nZEBs – A case study 

This section highlights the practices for monitoring and controlling energy targets. 

Data collection and processing can determine the actual building performance and 

the effects of user behavior on energy demand. Feedback from measurement 

systems is an effective means of influencing and changing behavior [34], [36]. 

This work focuses on strategies to influence behaviors and operate the building 

more efficiently. Measurement data could provide insights into the relationships 

among environmental conditions, behaviors, and energy [76].  

Monitoring plans identified significant energy savings, behaviors that require 

change, interventions to address the problem, and user benefits. 

3.3.1. Environmental conditions vs Energy Correlation analysis  

The purpose of this section is to demonstrate the relationship between 

environmental conditions (such as temperature and humidity) and energy 

consumption, providing a baseline for understanding user-driven behavioral 

effects in the next section. 
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Figure 50.  Description correlation of Temperature, Humidity vs Consumption by 

season in VHH's office 

Figure 50 shows the seasonal distribution of humidity and the relationships among 

temperature, humidity, and consumption. Summer has high moisture (relative 

humidity [RH]> 60%), which significantly increases the cooling load. The scatter plot 

shows that, at the same outdoor temperature, higher RH values are associated with 

higher consumption. At high temperatures (over 30°C), a saturation zone appears, in 

which decreasing the set-point no longer increases cooling efficiency, indicating the 

capacity limit.  

 

Figure 51. Energy by bins vs season in VHH’s platform 

Figure 51 shows HVAC consumption by temperature and season.  Consumption 

increases when Tout exceeds 27 °C, and summer has the highest values. For the 

same temperature range, summer always uses more energy than other periods 

because both heat and humidity rise together. In spring and autumn, consumption 

is much lower thanks to moderate weather. 
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Although weather strongly influences HVAC demand, daily consumption is not 

fully explained by environmental factors. Behavioral factors such as set-point 

adjustments and openings also have a significant impact. Therefore, the following 

section focuses on quantifying the effects of behavior under different 

environmental conditions. 

3.3.2. Data-driven behavior change analysis  

Aim of this section: 

 Analyze HVAC control behaviors to reveal patterns in energy use. 

 Measure HVAC consumption associated with key behaviors (habit/time, 

set-point, door status, occupancy). 

 Propose behavior-change measures that improve efficiency. 

Proposed a data-driven cycle for efficient, and sustainable operations:  

 

Evaluation: 

 Assess actual operation performance and user behavior. 

 Quantify energy-saving potential achievable through behavioral interventions. 

3.3.2.1. Behaviors’ HVAC on and Opening vs Energy Correlation  

The relationship between behaviors and energy could reveal wasteful factors. This 

study analyses the relationships among opening, HVAC operation, and 

consumption over five months to identify the behavior of wasted energy in an office. 

 
Figure 52. HVAC On (h) 

Total=1159.6h, Opening =2,9% 

 
Figure 53. Average HVAC power and 

Opening Portion 

Observation of waste energy behavior in Figure 52 shows an opening when 
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HVAC is on. In Figure 53, the significant increase in average HVAC power is 

attributable to the opening behavior. In May, this value (0.978 kW) was more than 

twice that of June (0.547 kW), corresponding to the opening (4.4% and 1.4%). 

The information could help managers require staff to engage in energy-saving 

efforts. The analyzed changes in energy behavior and the potential energy savings 

could inform HVAC operational scenarios. 

3.3.2.2. Set-point temperature and Energy correlation    

According to results in the previous study [36], this work further analyzes the 

relationship between set-point vs indoor temperature, and HVAC consumption 

across operating sessions. 

Data processing: (1) Consider HVAC is on; working hours (06AM–19PM); 

door/window are closed. (2) Grouping by outdoor conditions: Outdoor 

temperature ≥ 30°C and divide RH into 2 groups (RH≤60%, RH in the range of 

60–70%) for fair environmental comparison. (3) Analyze by the median value of 

the session and use IQR (Q25–Q75) to represent the variation (this will reduce 

noise compared to coarse dispersion). 

Explanation of symbols: 

 Average indoor temperature: Tin, compared to set-point: Tsetpoint: The line 

represents the average indoor temperature when on (Tin). The shaded area 

represents the range (Q25–Q75). 

 Tracking error = Tin − Tsetpoint: Equal to 0 when the set-point temperature 

equals the room temperature. 

 HVAC energy used per on session (kWh/session): The line shows the 

average energy consumption and the shaded area where the interquartile 

range (IQR) can be analyzed. The label n at each point indicates the version 

currently on. 
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Results and discussions: 

In Figures 54–55, Tout is over 30°C, Tin  stays around 30°C, and the tracking error 

(Tin − Tsetpoint) remains positive (about 5–6°C). This means the system does not 

reach the set-point, which is consistent with a limited-power condition under high 

heat load. When the set-point is changed from 24°C to 25°C and then 26°C, Tin 

changes very little and the error does not shrink. Thus, lowering the set-point does 

not improve the indoor temperature. 

Figure 54 (zoomed to 21–23°C) shows sessions with very low set-points (21–

23°C), the error is still clearly positive. Even setting an extremely low set-point 

does not help the room reach the target temperature. 

 

Figure 54. Indoor temperature response to set-point (median/IQR), 24–26°C  

 

Figure 55. Tracking error (Tin − Tsetpoint), session median ± IQR, 24–26°C 
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Figure 56. HVAC energy per ON-session (kWh/session) in the 24–26°C set-point range 

In Figure 56, energy consumption per session increases as the temperature set-

point is lowered (most noticeable at 24°C), but the Tin index does not decrease 

proportionally. This indicates an “oversetting” phenomenon: users set the 

temperature too low, increasing energy consumption while providing only 

minimal comfort benefits. Figures 54-56 also show the differences between 

humidity groups. In high humidity conditions, users can lower the temperature 

set-point, but the Tin index only reacts slightly. This indicates weak cooling 

performance in hot and humid conditions. 

Interventions: Re-examine HVAC system size and consider performance 

upgrades when high temperature saturation is observed. Higher temperature set-

points or adaptive temperature set-points are recommended. In saturation 

conditions, lowering the temperature set-point often increases energy 

consumption without a commensurate improvement in comfort. 

3.3.2.3. HVAC consumption modeling - Experiments 

Using historical data to develop a model and then assume a change in Tsetpoint and 

estimate what will happen to energy & thermal conditions if the policy is applied.  

The experiment purpose: 

 Simulate policy based on the condition if the Tsetpoint is increased/decreased 

(1°C), identify how expected energy consumption changes. 
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 Using the Pareto curve to analyze Energy use (kWh) and Comfort penalty 

ΔT to optimal savings with the minimal thermal comfort impact. 

 Understand the mechanism by using a Heat map HVAC ON probability 

against Tout vs Tsetpoint to see when raising Tsetpoint is most effective. 

a. Methodology 

(1) Gaussian Process-based HVAC consumption prediction model 

PHVAC = f(Tsetpoint, ΔT, occupancy, Tout, Tin, hour, weekday) (3.1) 

 Change simulated Tsetpoint on entire sample (step 1°C). 

 Expected energy:  

∑Pon×PHVAC×Δt/1000     (3.2) 

(Pon=1 when HVAC is ON and Pon=0 when HVAC is OFF) 

 Comfort ΔT: penalty if the set-point is outside the zone  

(2) Description of measured Data  

Measured data are collected from the building IoT system over 7 days with a 

sampling period of 10 minutes.  

Main variable groups: 

 System status: HVAC_ON, Tsetpoint 

 Environmental conditions: indoor vs outdoor temperature (Tin, Tout) 

 Human factors: occupancy 

 Energy: PHVAC 

 Variables: hour, weekday, temperature difference ΔT = Tin – Tsetpoint. 

 Behaviors: HVAC ON/OFF, Change Tsetpoint 

Assumption: increase Tsetpoint by +1°C, other factors remain no change. 

Estimated Data: One day data: 2020-09-10; 

b. Results and analysis  

The policy is to reduce energy use (kWh) while increasing ΔT slightly.  
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Table 8. Simulation results of constant set-point policies: expected daily HVAC 

energy and comfort penalty (10 September 2020) 

Figure 57. Pareto curve for energy and comfort analysis (10/09/2020) 

On the summer day, Table 08 and Figure 57 report the expected daily HVAC 

consumption and the comfort penalty ΔT under different constant-cooling set-

point policies. The baseline operation (at 26 °C) consumes about 5.44 kWh per 

day with comfort penalty ΔT (4.5°C).  

From three policies (at 22 °C, 23 °C, and 28 °C), the 28 °C set-point is attractive 

for reducing the expected daily HVAC consumption to 4.03 kWh (about 26% 

energy savings). So, the comfort penalty must decrease by about 2 °C compared 

to the baseline. In contrast, set-points at 22–23 °C could achieve larger energy 

savings (around 34–38%), but at a higher comfort penalty (+3–4 °C) (not suitable 

for general office use). 

Set point Expected energy use 

(kWh/day) ΔT (policy) 

22 3.39 8.5 
23 3.60 7.5 
24 4.03 6.5 
25 4.76 5.5 

26 (baseline) 5.44 4.5 
27 4.76 3.5 
28 4.03 2.5 
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Figure 58. HVAC ON probability heat map (Tout vs Tsetpoint) 

A Heatmap (Figure 58) is used for adaptive control suggestions. The 25–27°C set-

point column for the high Tout zone is lighter in colour (lower HVAC on 

probability). In the lower Tout, the effect of increasing Tsetpoint is negligible. This 

suggests that the set-point can be flexible by season. These results illustrate set-

point recommendations for both energy efficiency and comfort, and quantify the 

trade-offs associated with more energy-saving strategies.  

Interventions:  

 On one summer day, increasing the set-point from 26 °C to 28 °C reduces 

the expected HVAC consumption from 5.44 to 4.03 kWh/day (26% savings) 

with a lower comfort penalty (about 2 °C). 

 At high outdoor temperatures (above 30 °C), Figure 58 shows that 

increasing the set-point by +1 °C reduces the probability that the HVAC 

will turn on. Therefore, a simple control rule is increasing Tsetpoint by +1 °C 

whenever Tout > 30 °C, to limit peak cooling demand while keeping ΔT 

within the comfort limits of the Pareto analysis. 
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3.3.2.4. Behavioral change strategies  

 Real-time feedback: display warnings when the room is empty but the Air 

conditioning is still on or the door is open when cooling. 

 Target setting: sets a target to reduce PHVAC/week. 

 Automation: turn off Air conditioning after 15 minutes of no occupancy, 

synchronize with working schedules or occupancy sensors. 

3.3.3. Rooftop Building - Energy strategies analysis   

Maximizing self-consumption is essential for balancing demand and local power 

supply. This section evaluates self-consumption capability by comparing load 

indices across different time scales. 

 

Figure 59. Daily self-consumption from 12/9/2021-23/9/2021  

On the daily scale, the self-consumption rate fluctuates widely from 10% to over 

82% (see Figure 59). The results in different near days indicates that the variation 

is not only from weather, it could be together with both storage plan and user 

behaviors at smaller scale [36]. It is necessary to investigate in smaller scale to 

improve self-consumption rate. 

 

Figure 60. Time-series of inverter operating variables and power-flow components 

over a 24-h period (3 December 2021). 



  

84 

 

Figure 60 shows that although the PV system generated 8.6 kWh, the consumption 

only 2.2 kWh, and the battery discharged from 8AM to 4PM because it’s SOC 

was almost complete full before the PV peak. This behavior led to inefficient 

storage operation and a low self-consumption rate (25%). 

 

Figure 61. Time-series of inverter operating variables and power-flow components 

over a 24-h period (4 December 2021) 

In Figure 61, when the user actively planned the charge–discharge schedule to 

keep the SOC lower before the PV peak, the self-consumption rate increased to 

75% and grid export dropped markedly. A local control strategy charges the 

battery during overvoltage periods and discharges it when grid demand is high. 

This helps stabilize the voltage and improves on-site PV utilization.  

The minute-resolution experiments also show that user decisions when scheduling 

battery charge and discharge directly affect storage performance and the 

building’s self-consumption level. 

3.3.4. Energy efficiency project analysis  

After installing and operating the monitoring platform at VHH, we estimated the 

energy efficiency after one year. Table 9 shows that after 1 year of operating the 

IoT-BEMS platform, there is a significant reduction in electricity consumption: 

from 5,095 to 1,941 kWh/year. In contrast, the monitoring system consumed only 

69 kWh/year. The electricity saved reached 3,154 kWh/year (around of 62%). 

Based on an average electricity price of 2,000 VND/kWh, the cost saving is about 

6.31 million VND/year, the payback period is approximately 2.38 years. 
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Table 9. Summary of Energy Efficiency Calculation in VHH platform 

Item Value Notes 

Energy consumption  

before the project (Ei) 
5,095 kWh/year Baseline operation 

Energy consumption  

after implementation (Ee) 
1,941.05 kWh/year 

Consumption of electrical devices after 

applying  IoT-BEMS platform  

Energy consumption  

of the monitoring system 
69.33 kWh/year Additional load of the IoT-BEMS 

Energy saved  

Es = Ei − Ee 
3,153.95 kWh/year 

Reduction achieved through monitoring 

and control 

Electricity tariff (Pe) 2,000 VND/kWh Public college tariff 

Annual electricity cost savings  

Rb = Es × Pe 
6,307,900 VND/year Direct financial benefit 

Energy saving proportion  

Ps = Es / Ei × 100% 
62% Percentage reduction relative to baseline 

IoT-BEMS investment cost (Iv) 15,000,000 VND Hardware and installation costs 

Payback period (Iv /Rb) 2.38 years Excluding maintenance and depreciation 

These results show that the IoT-BEMS platform delivers practical efficiency: 

continuous monitoring, detailed load analysis, optimal self-consumption, and 

improved electricity usage behavior. Combining with a rooftop PV system, the 

platform helps increase energy efficiency and reduce operating costs with a short 

payback period. 

3.4. Conclusions of Part 3 

Part 3 applies the proposed IoT-BEMS platform to a real office building in 

Vietnam to analyze how environmental conditions and user behavior jointly affect 

HVAC energy use and rooftop PV self-consumption. Using one year of monitored 

data, the analysis quantifies how outdoor temperature and humidity affect HVAC loads.  

Choices of set-points, window opening and operating schedules, together with 

behavior-driven demand, can be translated into simple control rules. Raising the 

cooling set-point (about 2°C) can reduce daily HVAC energy use by 25–30% 

while maintaining comfort within acceptable limits. In hot periods, these simple 
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dynamic set-point rules work better than very low fixed set-points in the saturation 

zone. 

On the rooftop PV–Battery system, IoT-BEMS data show that monthly self-

consumption is around 40%. At the daily scale, values vary strongly (10–82%), 

depending on how the storage system is operated. Minute-level experiments 

confirm that user actions in scheduling battery charge and discharge can raise self-

consumption from 25 to 75% on a given day. Simple local rules charging the 

battery during overvoltage periods and discharging it when demand is high, help 

stabilize the connection point voltage and increase on-site PV utilization. 

The energy-efficiency VHH’s project analysis shows an annual electricity 

reduction of about 62% in the monitored system. The simple payback time for the 

IoT-BEMS investment is estimated at roughly 2.4 years. 

Overall, Part 3 shows that a low-cost IoT-BEMS can deliver actionable, high-

resolution feedback on environment, behavior and storage, and support effective 

user-oriented nZEB operation in real Vietnamese buildings. 
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Part 4. Optimal energy management strategies toward nZEBs  

4.1. Overview  

4.1.1. Optimal energy management strategies context 

Solar energy has high energy potential and low environmental impact. However, 

its weather dependent, variable output can cause grid fluctuations, additional 

losses, and power quality issues if it is not well controlled. 

To address these challenges, many authors have introduced the concept of energy 

autonomy in PV systems, defined as “the ability of the energy system to function 

fully, without the need of external support in the form of energy imports, through 

its local energy generation, storage and distribution systems” [77]. In practice, 

this autonomy is achieved by combining on-site PV, battery storage and 

controllable loads within a suitable control architecture. 

 

Figure 62. Diagram of energy flows in the Battery-PV system  

Figure 62 illustrates the main energy flows in a grid-connected PV–battery system. 

PV panels supply DC power that can (i) feed AC loads through an inverter, (ii) 

charge the battery when surplus is available, and (iii) inject excess energy into the 

grid. When PV and battery power are insufficient, the grid supplies the loads and 

can also recharge the battery. During grid outages, the PV–battery subsystem can 

still support critical loads, provided that the state of charge (SoC) remains within 

safe limits.  
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In this thesis, PV–battery architectures are considered for optimal energy 

management toward nZEB targets. The proposed IoT-BEMS platform is to 

monitor energy flows in real time and to implement control strategies to improve 

energy autonomy level. 

4.1.2. Key aspects of building energy management strategy design  

In the context above, this work focuses on designing optimal operating strategies 

for small and medium-sized existing buildings equipped with low-cost monitoring 

and control systems. The goal is to obtain strategies that can run on an IoT 

platform and also provide energy saving and cost benefits.  

The following key aspects are considered in the strategy design: 

 Model accuracy and computational performance, to ensure seamless 

integration into a low-cost IoT platform. 

 Flexibility of the optimization algorithms, so that different objectives and 

constraints can be addressed. 

 Practical feasibility of the energy management strategies, ensuring they can 

be implemented and operated in real buildings. 

The following sections build on these principles: Section 4.2 introduces the 

energy models used in the optimization (PV, battery and load models), Section 

4.3 presents the optimization problems and algorithms, and Section 4.4 applies 

them to real case studies in France and Vietnam. 

4.2. Energy Modeling   

Buildings are complex systems, so developing full dynamic models is often costly 

and data-demanding. In this work, instead of detailed numerical models, we adopt 

simplified model approaches to IoT-based building applications. Following [2], 

building models are grouped into empirical, analytical and numerical types. 

Numerical models require many physical parameters and high computing 

resource, which are rarely available in small and medium-sized buildings.  

Empirical and analytical models are more suitable for low-cost IoT platforms [30]. 
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Therefore, this thesis focuses on simple empirical and analytical models that are: 

 Accurate enough for control and energy management, 

 Lightweight model for embedded or low-cost PCs, 

 Easy to embed into optimization algorithms. 

Concretely: 

 Analytical models are used for PV production and battery (SoC). 

 Empirical (data-driven) models are used for load and demand forecasting 

based on historical data, without detailed construction parameters. 

These models form the basis for the energy management strategies developed in 

Sections 4.3 and 4.4. 

4.2.1. PV production model 

4.2.1.1. General context  

The development of PV systems recently has increased uncertainty variables in 

the electricity systems and is a significant challenge in balancing energy demand 

and power supply. Many studies show that PV forecasting is essential for both 

grid operations and local energy management in buildings [78]. PV forecasts are 

typically categorized by time horizon, ranging from very short-term (seconds to 

minutes) and short-term (hours to days) to medium and long-term [78]. 

Based on the input data sources, forecasting PV production models are classified 

into two approaches: direct and indirect [79]. The direct method predicts PV 

production using historical PV power output data. This approach requires 

historical power data, which is not always available and accessible. The rest 

method uses weather-forecasting data obtained from a meteorological station or a 

web service as input to the PV power-forecasting model. However, the model 

developed by this method depends on the accuracy of weather forecast data. This 

study uses weather forecasting data as the input of the PV forecasting model.  

For online applications, PV forecasts are continuously updated as weather data 

arrive. The PV production prediction model can be derived from solar radiation 
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[29]. The power produced by the photovoltaic panels (PV) is given by the equation 

below: 

PPV(t) = ηPV. SPV. IPV(t)   (4.1)   

Where: SPV –PV panels area (m2); PV – Efficiency of PV system; IPV – Total 

radiation on the plane of PV (W/m2), as following: 

IPV(t) = DNI(t). cosθ(t) + DHI(t).
1+cosβ

2
+ GHI(t). ρ.

1−cosβ

2
 (4.2)  

IPV(t) = DNI(t). cosθz(t) + DHI(t)  (4.3)     

DNI - Direct irradiation (W/m2); DHI - Diffuse horizontal radiation (W/m2); GHI 

- Global horizontal radiation consists of (DNI, DHI, and Reflection) (W/m2);  

  - Tilt angle of PV panels (rad); θz – Zenith angle (rad); θ – Theta angle (rad);  

ρ - Albedo coefficient; nref = 0.2 for polycrystalline modules; nreal = 0.8 and ninverter 

= 0.95 as a standard value it leads to nPV = 0.15 

 

Figure 63.  Components of solar radiation (direct, diffuse and reflection) to a PV plane 

In Figure 63, IPV represents the global solar irradiance on the panel plane (W/m2), 

which is composed of 3 components (direct, diffuse and reflection) and is derived 

from the weather data of Direct Normal Irradiance (DNI) ID (W/m2) and Diffuse 

Horizontal Irradiance (DHI) Id (W/m2). 

2

1
][

2

1 )cos(
..)t(I))t(cos().t(I

)cos(
).t(I))t(cos().t(I)t(I dzDdDPV





  (4.4) 

   is the tilted angle of panel plane (radian). Horizontal panel correspond 

to 0 ; 
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   (radian) is the angle between direct irradiance and the normal of the 

panel (Beware: If >pi/2 then 0 ))t(cos().t(ID
) 

 
z  (Radian) is the zenith angle (It is noted that 

z +   = /2 with   is 

sun’s altitude angle).  

   is the reflection coefficient of ground (also called albedo and is 

considered equal to 0.2 as a standard value) 

  (Radian) is the PV surface azimuth angle.  

o It is the panel’s orientation compared to the South Pole.  

o Its value range is between – and.  =0 for facing to South;  = 

/2 for facing to West,  = -/2 for facing to East.   

 

 

Figure 64. Geometric definition of site 

coordinates on Earth: latitude (φ) and 

longitude (λ) [29]  

Figure 65. Definition of solar angles 

at a site: declination, hour angle, and 

local latitude [29] 

   (Radian) is the angle between the equatorial plane and the direct 

irradiance, also called declination angle : 








 


365

)284.(2
sin45.23

180
)(

journ
t


   (4.5) 

 njour is the day of the year (n=1 on the 1st January).  

   is the hour angle (radian). The hour angle is dependent on the true solar 

time (TSV in hour):   

 
180

.12.15)(


  TSVt               (4.6) 
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journ
B

Bsin.Bcos.Bsin.ET

ETL
tTSV

 

Where: t (hour) is the time indicated on our watch. =1 in winter days and =2 in 

summer days. L (in degree) is the longitude of location regarding prime 

(Greenwich) meridian. Its value is negative in East and positive in West. ET (in 

minute) is the correction of the time equation (See Figure 64, Figure 65). 

4.2.1.2. Developing an online PV production prediction model  

In this work, PV forecasting is used for control-oriented energy management on 

a low-cost platform. Recent studies show that lightweight online models, updated 

on sliding windows of short- horizon data, can provide sufficiently accurate 

forecasts while remaining computationally efficient for hardware [64].  

In this context, the proposed PV model is designed to (i) run on a Raspberry-Pi-

class device, (ii) use only a short recent history of local measurements, and (iii) 

exploit exogenous weather forecasts (cloud cover / nebulosity) that are updated 

online. This design explains why the training dataset is short, as the model is 

continuously updated with the most recent data. 

(a) Methodology – Clear Sky Model 

The PV power output can be characterized using measured irradiance (W/m²), but 

the measurements are not always available in many locations [80]. Clear-sky 

models therefore provide a useful alternative by estimating solar irradiance 

without requiring on-site radiometric sensors.  

Several families of clear-sky models come from straightforward geometric or 

more complex models [80], [81].  Although complex models can be more accurate 

in highly variable aerosol location, models often achieve comparable accuracy 

with much lower computational cost and fewer input variables [83], [84]. 
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In this work, the online PV prediction model adopts a clear-sky–based indirect 

approach: 

 A clear-sky irradiance curve is computed for the site, then corrected using 

nebulosity forecasts obtained automatically from a web service.  

 The irradiance is finally converted into expected PV power using nominal 

system parameters and empirical efficiency factors [77], [84], [85]. 

 The model is embedded in a low-cost Raspberry Pi within the PV 

monitoring system: Nebulosity forecasts are updated every 3 hours; the 

model parameters are periodically re-fitted on a short recent history of 

measured PV data; approach real-time operation on low-computing 

hardware and accurate for short-term energy management. 

In previous work, the forecasting irradiance model is developed by approaching 

the clear sky model and the Nelder-Mead optimization algorithm [86]. 

(b) Data collection  

 

Figure 66. Description of the weather station on GreEn-ER rooftop 

The measured GHI/DNI dataset from Campbell Scientific weather station 

(including Rotating Shadow band Radiometer) in Figure 66.  
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Figure 67. Description of validation model diagram 

(c) Evaluation factor:  

RMSE = √mean(model value − measured value)2  (4.7) 

(d) Results and Validation 

In Figure 67, validation model solution is described with RMSE. Measured PV 

power data from a real PV's system in 2018. PV parameters include (location 

(longitude and latitude), area of PV, tilted angle, and azimuth angle of PV plane). 

  

(a) PV prediction in one year   (b) PV prediction in one week  

Figure 68. Comparison of PV power measure (W/m²), and PV model output 

In Figure 68.a. model data (the red dot line) are sometimes much lower than 

measured data (the blue dot line). For example, in Sep 2018, there was sometimes a 

blue dot point’s value approximating higher twice the red dot point’s value. In Figure 

68.b (for a one-week prediction horizon), the model could achieve a better prediction 

result (average of RMSE=5.2W). Therefore, the model is suitable for short-term 
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prediction. The model quality depends much on the accuracy of weather forecast 

data. In this work, the online predicted PV production model is available on a 

raspberry Pi 3 on Greenhouse. 

4.2.2. Battery model [29] 

In battery model, we are interested of linking storage capacity and 

charge/discharge process at any given time. This model is described by [29]. 

Battery charging process: 

Cbat(t) = Cbat(t − Δt). (1 − σ) + ηc. Pbat
c (t). Δt  (4.8) 

Battery discharging process: 

Cbat(t) = Cbat(t − Δt). (1 − σ) −
Pbat

c (t)

ηdc
  (4.9)  

Where: Cbat (t) - The battery's available capacity (Wh) at time t and t-∆t. 

 σ is the self-discharge rate of the battery. 

ηc and ηdc are the charging and discharging efficiency of the battery. 

Pbat
c (t) , Pbat

dc (t) are the charging/discharging power at time t, respectively. 

If we consider an ideal battery with perfect charging and discharging performance 

and no self-discharge, it can be simplified by: 

Cbat(t + 1) = Cbat(t) + Pbat ∗ ∆t     (4.10) 

Where: Pbat (t) (W) is the capacity of the charge if its value is positive, of the 

discharge if it is negative. The battery's charging and discharging capacity will be 

optimized according to energy production and consumption.  

Energies balance: PG (t) = Ploads (t) + η*(Pbat (t)-PPV (t))      (4.11) 

Where: PG (t) is the electrical power exchanged with the grid (W); PPV (t) is the power 

from the PV panels supplied to the system; Ploads (t) is the total load power (W).  

Electricity will be imported from the grid if its value is positive otherwise fed to the grid 

if its value is negative. The inverter’s efficiency η, in this study is assumed to be 1. 

4.2.3. Load model   

Forecasting a building's energy use is a key input to any optimization strategy. 
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However, it is difficult to accurately predict demand because it depends on factors 

such as weather and occupant behavior. In this work, the load model is developed 

using historical data collected from the building. Data input includes TiZ3, Tour, 

PTotal,t-1
 ; Data output is PTotal,t , with  PTotal,t is prediction total power consumption.  

The study developed total consumption model based on GPR technique and the 

input data includes the indoor temperature (TiZ3) and the historical total power 

consumption ( PTotal,t−1 ). The training dataset is one week data in July 2020, the 

test dataset is one week data in August 2020. In this work, the root mean square 

error is 25.6W, and the mean absolute error is 51.5W, and 95% confidence 

interval. Since, the load model could be good to predict total power consumption 

in one week horizon prediction. 

4.2.4. A model-based energy management workflow in IoT-BEMS platform  

To link the energy models of Section 4.2 with the optimization problems discussed in 

Section 4.3, Figure 70 summarizes the overall workflow of the proposed model-based 

energy management strategy implemented in the IoT-BEMS. 

 

Figure 69.General workflow of model-based optimal energy management in IoT-BEMS. 

Figure 69 summarizes how the proposed IoT-BEMS uses models to manage energy 

flows. Historical building data (load, PV and tariffs) and weather forecasts are first 
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collected and stored in the database. The PV production, short-term load and battery 

SoC models work together to predict generation, demand and available storage 

capacity. These predictions feed the optimization block, which checks the power 

balance and storage limits and then computes control actions, such as charging or 

discharging the battery, shifting loads or curtailing surplus PV.  

The resulting setting points are sent to the load controllers and inverter, while the 

monitoring system records SoC and load values for further analysis. The same 

workflow is used in the Greenhouse and VHH case studies, with different 

objectives (self-consumption and system sizing in the Greenhouse, electricity-bill 

minimization in VHH). 

4.3. Optimization Problem & Algorithm- Programming languages 

4.3.1 Problems & Algorithms 

Building energy management leads to constrained optimization problems, where 

the objective is to minimize an energy-related cost (electricity bill) or maximize 

on-site self-consumption, subject to power balance and battery SoC constraints. 

Because of non-linear components (battery, tariff structure, operating modes, etc.), 

these problems are non-linear. A wide range of optimization techniques apply in 

building, including Linear Programming (LP), Quadratic Programming (QP), 

Mixed-Integer Linear Programming (MILP), Sequential Quadratic Programming 

(SQP), as well as meta-heuristics such as Genetic Algorithms (GA) and Particle 

Swarm Optimization (PSO) [87]. This approach enables rapid convergence for 

moderate-sized problems and is well-suited to low-cost hardware. 

In this thesis, SQP is adopted as a good compromise between robustness, 

computational efficiency and ease of integration into an automatic optimization tool 

[87]. SQP iteratively solves a sequence of quadratic sub-problems that approximate 

the original non-linear objective and constraints, using first-order derivatives to update 

the search direction. This approach provides fast convergence for the moderate-size 

problems and is well-suited for a low-cost hardware. 

Principle of Sequential quadratic programming (SQP) [29]: algorithm solves 
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a sequence of optimization sub problems, each of which optimizes a quadratic 

model of the objective subject to constraints.  

By the direction searching process, dk, from initial possible point, xk, and 

approximating nonlinear problem, Quadratic programming formula is: 

min
dk

1

2
. dk

T . Hk. dk + ∇f(xk)
T

. dk   (4.12) 

∇h(xk)
T

. dk + h(xk) = 0 

∇g(xk)
T

. dk + g(xk) ≤ 0 

∇𝑓(𝑥𝑘)  Gradient of the scalar objective function  𝑓(𝑥𝑘) , ∇ℎ(𝑥𝑘) and ∇𝑔(𝑥𝑘) is 

the Jacobian of the equality constraints and inequality constraints of ℎ(𝑥𝑘) and 

𝑔(𝑥𝑘) respectively. 

∇𝑓(𝑥𝑘) = (

𝜕𝑓

𝜕𝑥1
𝑘

…
𝜕𝑓

𝜕𝑥𝑛
𝑘

) ; ∇ℎ(𝑥𝑘) = (

𝜕ℎ1

𝜕𝑥1
𝑘 …

𝜕ℎ1

𝜕𝑥𝑛
𝑘

… … …
𝜕ℎ𝑝

𝜕𝑥1
𝑘 …

𝜕ℎ𝑝

𝜕𝑥𝑛
𝑘

) ; ∇𝑔(𝑥𝑘) = (

𝜕𝑔1

𝜕𝑥1
𝑘 …

𝜕𝑔1

𝜕𝑥𝑛
𝑘

… … …
𝜕𝑔𝑞

𝜕𝑥1
𝑘 …

𝜕𝑔𝑞

𝜕𝑥𝑛
𝑘

) 

𝐻𝑘 = ∇𝑥(∇𝑥𝐿(𝑥𝑘 , 𝜆𝑘 , 𝜇𝑘)) - The Hessian of the Lagrangian function  

𝐿(𝑥, 𝜆, 𝜇) = 𝑓(𝑥) + 𝜆𝑇 . ℎ(𝑥) + 𝜇𝑇 . 𝑔(𝑥)     (4.13) 

𝜆 ∈ ℜ𝑝; 𝜇 ∈ ℜ𝑞 - The Lagrange multipliers. 

xk+1=xk+αdk  - An approximating xk+1 is defined by searching direction of the 

initial variable xk,  0,1 - the step space, determined by to satisfy the objective 

function and constraints [29][88]. 

In the case studies of Sections 4.4.2 and 4.4.3, this SQP-based solver is used to compute 

daily optimal schedules for PV–battery operation and controllable loads under different 

objectives (self-consumption maximization and electricity-bill minimization).  

4.3.2 Programing languages - Software  

The Grenoble Electrical Engineering Laboratory (G2Elab) developed a new open-

source NoLOAD using Python, which is easy to understand for designers [89].  

NoLoad is a lightweight library for non-linear optimization that relies on 
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Automatic Differentiation (AD) to compute derivatives. Role of Library: 

 It uses Sequential Least Squares Quadratic Programming algorithm, 

providing a stable and low-cost computing solution, suitable even for 

embedded hardware.  

 The tool allows the designer to define constraints on both input and output 

parameters of the model and to specify one or multiple objective functions 

to be minimized.  

 NoLoad automatically analyses inputs and outputs of a given model and 

selects the appropriate forward or reverse AD mode to improve 

computational performance.  

 It also supports problems with vector-valued constraints, which is 

convenient for complex engineering models. 

Figure 70. Overview of the NoLoad library architecture [89] 

Figure 70 describes structure of the NoLoad library. It solves two kinds of 

optimization problems for non-linear systems: system sizing and computing 

optimal controller. In the next part, the study will apply these methods to control 

strategies on two case in France and Vietnam. 
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4.4. Optimal energy management applications – Study cases 

In this section, the modelling and optimization framework introduced in Sections 

4.2 and 4.3 is applied to case studies targeting nZEBs.  

Two experimental platforms are considered: 

 An aquaponics Greenhouse installed on the roof of a building in France, 

used as a self-consumption and self-supply testbed. 

 The VHH building in Vietnam is a grid-connected office/educational 

facility operated under Vietnamese electricity tariffs. 

From real platforms, three studies are analyzed:  

 Section 4.4.1 – Energy balance analysis in nZEBs-Greenhouse testbed: 

evaluation of annual and seasonal energy balance using load-matching 

indicators (γsupply, γload) based on monitored PV production and load data 

from Greenhouse;  

 Section 4.4.2 – Energy management strategies for PV–Battery system 

sizing: formulation of a data-driven sizing problem on Greenhouse 

platform, combining monitored data, simplified models and optimization 

to explore trade-offs between autonomy, curtailment and storage capacity;  

 Section 4.4.3 – Optimal control strategies for minimal electricity bill: 

application of the same modelling and optimization framework to VHH 

Platform. The objective is to minimize the electricity bill while improving 

self-consumption with operational constraints. 

4.4.1. Energy balance analysis in a nZEB [68] 

4.4.1.1. Case description - Problem statement  

This section uses an aquaponics greenhouse as an experimental nZEB case study to 

assess the energy balance. The goal is to quantify how well on-site PV generation 

matches energy demand across different time scales and to identify periods of deficit 

and surplus. The results provide a basis for the subsequent system sizing strategy 

developed in Section 4.4.2.  
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Following the methodology adopted in European solar projects [28], the 

relationship between on-site supply and electrical demand is characterized by two 

load-matching indicators. The supply cover factor express fraction of PV 

production is self-consumed in the building. The load cover factor express 

fraction of the building demand is covered by on-site PV generation.  

Over a time horizon [t1-t2] , the cover factor (γsupply) and load cover factor (γload) 

are defined in [28] with equations below :   

γsupply =
∫ min[𝑔(𝑡)−𝑆(𝑡)−𝜁(𝑡)∗𝑙𝑜𝑎𝑑(𝑡)]𝑑𝑡

𝑡2
𝑡1

∫ 𝑔(𝑡)𝑑𝑡
𝑡2

𝑡1

                   (4.14) 

γload =
∫ min[𝑔(𝑡)−𝑆(𝑡)−𝜁(𝑡)∗𝑙𝑜𝑎𝑑(𝑡)]𝑑𝑡

𝑡2
𝑡1

∫ 𝑙𝑜𝑎𝑑(𝑡)𝑑𝑡
𝑡2

𝑡1

               (4.15) 

 𝑆(𝑡) = 𝑠𝑐(𝑡) − 𝑠𝑑𝑐(𝑡)             (4.16) 

Where:  

t1/t2 are start/end of the evaluation period;  

g(t) is energy production; ζ(t) is energy losses;  

load(t) is the power of loads;  

S(t) is the storage energy balance defined by Equation 3. In which, sc/sdc are 

charging/discharging storage energy. 

In this case study, γsupply  and γload  are computed at daily and monthly scales; PV 

production and load data come from the Greenhouse platform. The formulation 

provides a quantitative basis to evaluate how close the monitored building 

operates to nZEB targets, and to benchmark future scenarios with improved 

control strategies and PV–battery configurations. 

4.4.1.2. Results and discussion 

Energy balance in the nZEB Greenhouse is evaluated using monitoring data for load 

consumption, PV production and system losses, combined with PV production 

simulations from PVSyst.  

The loads have a nominal power of 42 W, and the system losses are approximated as 



  

102 

 

10% of the nominal load (4.2 W). Assuming pump operates 24 h/day. Over one year, 

the loads will consume 368.4 kWh, while the PV system produces 406.4 kWh, 

giving a yearly supply cover factor of γsupply,year = 0.91 and a yearly load cover 

factor of γload,year = 1.0 [68]. This indicates that, on an annual basis, local PV generation 

is sufficient to cover the total demand, with only a small energy surplus. 

 

Figure 71. Consumption vs Production on Greenhouse project 

Figure 72. Monthly Energy Balance (>0: Export vs <0: Import) on Greenhouse project 

 

Figure 73. Distribution of production on Greenhouse Project 
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Figure 71 compares monthly consumption and production. Load demand is almost flat 

over the year (around 30 kWh/month), whereas PV generation shows strong seasonality, 

with high production in summer (May–August) and deficits in winter (January–

February and October–December). This pattern is reflected in Figure 72, where positive 

values correspond to monthly surplus (export) and negative values to monthly deficit 

(import). Figure 73 decomposes PV production into self-consumed energy and grid 

export. During summer months, most of the surplus is exported, as the battery 

capacity is not sufficient for seasonal storage. In contrast, winter operation relies 

partly on grid import despite platform annual balance.  

These results highlight that, for a small platform, PV sizing alone is not enough to 

guarantee self-sufficiency at all times. Complementary demand-side management 

(load shifting or curtailment in winter) and storage/control strategies are required to 

improve seasonal matching between supply and demand. 

4.4.2. Energy management strategies approach system sizing [68] 

Based on the energy balance analysis in Section 4.4.1, this subsection formulates 

a system sizing and operation problem for the autonomous Greenhouse. 

4.4.2.1. Greenhouse’s platform description 

In the SERRE project, the greenhouse is installed on the roof of the building in 

Grenoble. It's a closed-loop, recirculating hydroponic system combining fish 

farming and plant cultivation, aiming for energy self-sufficiency and sustainable 

food production. Therefore, the greenhouse requires an energy monitoring and 

control system to ensure continuous operation when solar power is insufficient.  

 

Figure 74. Overview of the Greenhouse testbed in Grenoble [68] 
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Figure 74 shows the aquaponics Greenhouse with PV system and an electrical box 

for setting up the monitoring and control system. The electrical box stores the 

inverter, protection devices, batteries, and a low-cost monitoring and control 

board (based on an Arduino and a Raspberry Pi). The Raspberry Pi acquires power 

data from the energy meters and sends control commands to the pump via the 

Arduino. 

 

Figure 75. The Greenhouse Low-cost monitoring and control hardware [68] 
 

A diagram of the PV–battery–load architecture and the main component ratings 

is shown in Figure 75. The system consists of six PV panels (64 W/module); two 

12 V&22 Ah batteries; a 2.4 kW inverter charger, and a 24VDC pump. This 

configuration shows that the Greenhouse testbed is fully monitored and controlled 

using inexpensive hardware, consistent with the low-cost IoT-BEMS approach. 

4.4.2.2. Problem formulations  

The greenhouse is operated as an islanded DC system. The sizing problem is to select 

PV and battery capacities, together with a simple pump control rule, such that: 

 The IT monitoring load is always supplied; 

 The aquaponics pump operates as long as possible over 24 h; 

 Curtailment and unnecessary oversizing of PV and battery are limited. 

To evaluate performance, the load-matching indicators introduced in Section 
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4.4.1 are used at daily scale: γload close to 1 indicates that the local production is 

sufficient to cover the daily demand, whereas γsupply measures self-consumption.  

The objective of the sizing problem is to maximize the self-consumption factor 

(γsupply) under constraints on the load cover factor (γload) and State of charge (SoC).  

Objectives function:  

J =abs(∑ PLoads(𝑡) ∗ ∆𝑡𝑡=𝑇
𝑡=𝑡0  −  𝑃pv(𝑡) ∗ ∆𝑡 )  (4.17) 

Input data: GreenHousePV-Prediction.csv; GreenHouseLoad-History.csv 

Decision variables: Ppump(t), Pbat(t) 

Power balance: Pgrid (t) = Ploads (t) +Plosses(t)+Pbat(t)- Ppv(t) 

Boundary conditions: 0<Ppump(t)<Pmax  and - (Cmax-Cmin) /dt < Pbat < (Cmax-Cmin) /dt 

For finding control step: a test time response of actuator in one minute was carried out. 

Pump could be controlled to change from min power to max power and reversely.  

For the optimization algorithm, assume that:  

-Pmax<dPpump/dt<Pmax 

Initial conditions:  

Cnom=27.2V*22Ah=600Wh; Cmin=20%*Cnorm=120Wh;  

Cmax=80%*Cbnorm=480Wh; Cinit=50%*Cnorm= 300Wh;  

Pmax=25W; PcriLoad=10W 

All symbols of variables in Greenhouse test case are presented and explained in Table 10. 

Table 10. Symbols of variables in Greenhouse test case 

Parameter Unit Description  

𝐽 Wh Objective function: Total surplus PV energy  

T hour Optimal time  

Pbat W Capacity of the battery 

Cnorm Wh Rate capacity of the battery (600Wh) 

Cmin Wh 20% Cbat_norm 

Cmax Wh 80% Cbat_norm 

Cinit Wh Initial capacity of battery = 50% Cnorm 

Cbat(t) Wh Capacity of battery at time t 

Ppv(t) W Predicted Power produced by the PV system at time t 

PLoad (t) W Toal consumption of Loads at time t 

Ppump (t) W Consumption of Pump at time t 
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Plosses(t) W Power losses at time t 

PcriLoad W Power consumption of IT components (10W) 

Pmax W Highest consumption of Pump when it works 

Pmin W Lowest consumption of Pump when it works  

Pzero_pump W Consumption of Pump when it is not work (0W) 

Total_load W Total power consumption of loads (IT and Pump)  

Ppump_optimal (t) W Optimal consumption of Pump at time t 

Pbat_optimal (t) W Optimal battery capacity at time t 

SoC (t) % State of charge of battery at time t 

SoCoptimal (t) % Optimal state of charge of battery at time t 

 

4.4.2.3. Optimization strategy 

Building on the modelling and optimization framework introduced in Sections 4.2 

and 4.3, this subsection defines the specific control strategy for the Greenhouse 

PV–Battery system.  

Autonomous PV–Battery systems with similar objectives have been widely 

analyzed in the literature [90], [91], [92], often using probabilistic indicators such 

as Loss of Load/Power Loss Probability. Other studies have highlighted the 

impact of inverter operation and conversion losses on the energy balance [93], 

[94]. Although these losses are sometimes neglected in control design. In this 

work, measured data from the Greenhouse are used to build empirical models of 

PV production, load profiles and conversion losses. 

The objective of the experiment is to ensure a continuous power supply to the IT 

system and to minimize pump shutdown time to preserve the aquaponics 

ecosystem. When PV power is available, it is used to supply the IT and pump 

loads and to charge the battery; when PV power is insufficient or unavailable, the 

battery discharges to support the loads.  

The optimization strategy adjusts the pump power and battery charge/discharge 

schedule based on stage of charge (SoC) and power balance constraints to 

maximize self-consumption while avoiding storage oversizing. 

4.4.2.4. Results and discussion 
 



  

107 

 

On a typical summer day, the PV array produces about 1059 Wh while the total 

daily consumption is around 730 Wh. At daily scale, the load cover factor is γload 

= 0.9, indicating that local production almost meets the demand, and the supply 

cover factor is γsupply = 0.7, meaning that about 70% of PV energy is self-consumed 

and 30% is surplus. 

Figure 76. Results of optimal management in Greenhouse 

Figure 76 illustrates the optimal schedules of pump power, battery power and 

battery state of charge.  

During daytime (9:00–18:00), PV production supplies both the loads and battery 

charging. At night, the battery discharges to support the loads as long as the SoC 

remains above a minimum threshold. In the optimized strategy. The pump 

operates at reduced power when SoC drops below a given level, and is temporarily 

stopped when SoC becomes critically low, while the IT load remains supplied. 

Compared to a naive strategy where the pump always runs at nominal power, the 

proposed control extends the pump operating time by more than two hours under 

the same PV–battery sizes, and avoids deep battery depletion that could interrupt 

the IT system. This shows that even a simple optimization-based strategy can 

significantly improve the autonomy and robustness of a small nZEB-like system 

using measured data and a low-cost control platform. 

4.4.3. Energy management strategy approach minimal electricity bill 
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In this section, the optimization framework is applied to a typical Vietnamese 

office building, using the VHH platform as a case study. The goal is to design 

energy management strategies that minimize the electricity bill under a time of 

use tariff, while maintaining safe operation of PV–Battery system and loads. 

The PV and battery models are reused from the Greenhouse project. While In the 

load profile and tariff structure reflect Vietnamese conditions, characterized by 

high cooling demand and strong PV production in summer, but limited storage 

capacity due to investment constraints. 

4.4.3.1. VHH’s platform description 
 

The VHH platform represents an office building in Vietnam equipped with: 

 On-site grid-connected PV system; 

 A battery storage system with limited capacity; 

 Monitored building loads with significant HVAC contribution; 

 A time-of-use electricity tariff with off-peak, normal and peak periods, 

where peak prices are substantially higher than the feed-in tariff. 

Measured data from VHH (building consumption, PV production, and battery 

operation) are used with the PV and battery models for testing energy 

management strategies. The NoLoad optimization tool, developed by G2Elab 

(University Grenoble Alpes), is used to solve optimal control problems.  

4.4.3.2. Implement energy management strategies 

a. Methodology Approach 

Energy management is formulated as an optimization problem that coordinates 

PV, battery and grid exchanges in response to the tariff profile. 

Two stakeholder perspectives are considered: 

 Grid operators: reduce peak demand and power fluctuations by the grid; 

 Consumers: maximize on-site use of PV energy and minimize the 

electricity bill. 

The control variables include the battery charging/discharging power and the 

fraction of building load supplied by PV, battery and grid over time. 
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b. Optimization formulation  

The optimization problem is defined over a 24-hour horizon with a time 

discretization consistent with the monitoring data. Objective is minimize the daily 

electricity cost, such as sum of energy imported from the grid weighted by time 

of use prices, while encouraging self-consumption of solar energy.  

Objective function:  

J = (∑ Pim(t) ∗ ∆tt=T
t=t0 ∗  Priceimport(t)  −  Pex(t) ∗ ∆t ∗ Priceexport(t) ) (4.18) 

Power balance: Pgrid (t) = Ploads (t) +Pbat(t)- Ppv(t) 

Decision variables: battery charge/discharge power, grid import/export, and 

operational status of flexible loads (when applicable). 

Constraints: Power balance between PV, battery, grid and loads at each time step; 

Battery state-of-charge (SoC) limits and maximum charge/discharge power; 

Operational constraints on loads; Grid exchange limits if applicable.  

Contraints include: 

 Cmin ≤ Cbat(t)≤ Cmax ;  

 Cinit=Cbat(T) ;  

 Pdis_max ≤ Pbat(t) ≤ Pch_max; 

If Pbat (t) ≤ 0: charging power of battery: Pch (t) = Pbat (t);  

If Pbat (t)>0: discharging power of battery: Pdis (t) = Pbat (t);  

 Pgrid(t)>0: Pim(t);  

 Pgrid(t)<0; Pex(t) ; 

 Ppv(t)>= Pex(t); 

 Assumption: Pex_max= 2000W; Pim_max= 2000W;   

This optimization is implemented and solved in NoLoad library, using a 

Sequential Least Squares Quadratic Programming (SLSQP) solver.   

The symbols of parameters values for operation of PV system described in Table 11. 

Table 11. Description of parameters and symbols used in simulation 

Parameter Unit Description  
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𝐽 VNĐ Objective function is total energy costs to be paid by users 

Pim(t) W Power consumption taken from the grid at time t: 𝑃𝑖𝑚(𝑡) 

Pex(t) W Power pumped into the grid at time t: 𝑃𝑒𝑥(𝑡) 

Pgrid(t) W Power exchanged with the grid at time t 

T hour Optimal time  

T hour Time step of data  

Pbat W Power of the battery 

Pdis max W Battery discharge capacity limit  

Pch_max W Battery charging capacity limit  

Cnorm Wh Rated capacity of the lead acid battery   

Cmin Wh 20% Cnorm 

Cmax Wh 80% Cnorm 

Cinit Wh Initial capacity of battery = 50% Cnorm 

Cbat(t) Wh Capacity of battery at time t 

Ppv(t) Wh Power produced by the PV system at time t 

Priceimport VNĐ Electricity price purchased of EVN 

Priceexport VNĐ Selling price of solar power of EVN 

Ploads (t) W Total consumption of loads at time t 

Pch-pv (t) W Power Battery charging capacity from solar energy at time t 

Pch-grid (t) W Power Battery charging capacity from the grid at time t 

Ppv(t) W Installed PV Power at time t 

Pex_max W Maximum Power export to grid  

Pim_max W Maximum Power import from grid  

 

c. Data collection 

(1) Energy consumption data: Measured load data from the smart meters (Figure 

77). The VHH test model has 3 groups of loads powered by 3 different power 

lines: Plugs load; Lighting load; Air conditioning load (HVAC - highest priority).  

(2) PV system data: one-day history of measured PV power data;  

(3) Electricity tariff of EVN: The selling price of solar power to the grid (FIT2) 

Priceexport =1.943 (VNĐ/kWh); In Figure 78, electricity purchase price from the 

grid Priceimport (VNĐ/kWh). 
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Figure 77. Detail consumption data from the smart meters in VHH’s Platform 

 

Figure 78. Electricity tariff profile applies to enterprises 

d. Scenarios 

The different simulation scenarios to compare benefits of the PV system with batteries.  

Scenario 1 (Based-management) is presented a PV system without battery – Solar 

energy prioritized for on-site consumption. If the excess energy produced by PV 

panels will be transferred to the grid, if not enough solar energy will be taken from 

the grid (Figure 79).   

Scenario 2 is presented A grid connected PV system with battery (Minimize 

electricity-bill) (Figure 80). 
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Figure 79. PV system without batteries 

 

Figure 80. Grid-connected PV system built-in batteries 

e. Evaluation of energy and cost benefits 
 

This section compares the obtained optimization results with scenarios on a 

typical day in summer when buildings are at a time of high energy demand and 

PV data. The electricity tariff profile is shown in Figure 82. According to the tariff, 

there is a big difference between peak and off-peak hours. The electricity price in 

Peak hours is two times higher than the PV selling price, and 1.3 times higher than 

the PV selling price in normal hours. However, electricity prices at off-peak hours 

are lower than PV electricity prices. The objective is to evaluate the benefits of energy 

management solutions with/without energy storage systems. 

- Scenario 1 (Based-management): Operating PV system without battery, 

calculating total energy pumped into the grid and energy cost in 24h.  

- Scenario 2 (Optimization SQP method): Operating a grid connected PV 

system integrated batteries.  
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In scenario 1, power consumption from the grid is required when solar power is 

unavailable or insufficient to meet demand. Grid power consumption gradually 

decreases as PV power increases during the day.   

 
Figure 81. Simulation of operation of PV solar power system without battery 

In Figure 81, the amount of PV generated is for export and self-consumption. 

During certain daytime periods (7:30–10:00, 12:30–14:00, and 16:30–19:00), PV 

generation is insufficient to meet the load demand. Therefore, the building must 

import from the grid at a high tariff, which increases total electricity costs.   

In scenario 2, when the battery is available, and the algorithm optimizes the 

battery charge/discharge capacity, observing the dark blue line in Figure 81. 

 

Figure 82. Simulation of PV system operation with built-in battery 
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Figure 82 shows that the amount of imported electricity at the time of high 

electricity purchase price decreases during 16h30 to 19h (when the highest 

purchase price of electricity). During the daytime, excess solar energy charges the 

battery and maximizes benefits for building owners based on the difference 

between the selling price of solar power and the electricity price.  

 

Figure 83. The relationship of energy flows and the purchase price of electricity 

Figure 83 shows that battery prioritizes charging from the grid at night when 

electricity purchase price is lowest (lower than the selling price of solar power). The 

curves could give users an energy storage plan to optimize their electricity bills. 

Table 12. Calculation results of cost and peak load demand in building 

Scenarios Cost export 

(103 VND/day) 

Cost import 

(103 VND/day) 

Electricity Bill  

(103 VND/day) 

Peak demand 

(W) 

Baseline: Building without 

PV system 
0 30.508 30.508 1418.5 

Scenario 1: Building 

integrated 

PV system without battery 

13.915 14.419 0.504 1175.76 

Scenario 2: Building 

integrated  

PV system with battery 

10.106 4.804 -5.202 537.64 

Comparing the scenarios described in Table 12, we see that the storage system 

reduces the peak load demand, and the electricity bill is the best obtained in the 

PV system with the battery. This building has around 27% of the exported energy 

reduction and a decrease of more than half the energy imported from the grid 

compared with case 1. 
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f. Evaluating the environmental impact  

The optimization framework is used to compare the CO₂ emissions of two 

configurations: 

 Case 1: Building without PV system 

 Case 2: Building integrated PV system with battery (the best case in 

evaluation of energy and cost benefits) 

In order to calculate global warming potential index in this study, we used 

parameters in Table 13 below: 

Table 13. Parameters for calculation the environmental impact assessment 

Parameters Note  

SPV = 17.6 m2  

Lifetime of monocrystalline silicon in 30 

years[95] 
PVGWP = 4740 (kgCO₂e/year/m2) 

Study time is N =30 (years) 

BatGWP=351(kgCO₂eq / Total whole life cycle) 

Cbat=800Ah 

Lead-acid battery 200Ah, Total whole life 

cycle is 3 years [96] 

VN_powergridCO₂   =815.4 (kgCO₂eq / kWh)  CO₂ emission average index of Vietnam's 

power grid  = 0.8154 (tCO₂eq/MWh) [97] 

Total consumption =5095 (kWh/year) Data in project 

Gridimport = 2498 (kWh/year) Data in project 

Case 1: Building without PV system 

Environmental impact assessment index (Global warming potential (GWP)) is 

presented in the equation below:  

GWP_1 (kgCO₂e) = VN_powergridCO₂ * Gridimport (kWh/year) * N = 

124633000.89 (kgCO₂eq) 

Note: In this case, the Total consumption equals Gridimport. 

Case 2: Building integrated PV system with battery 

Environmental impact assessment index (Global warming potential (GWP)) is 

presented in the equation below:  

GWP_2 (kgCO₂e) = PVGWP * SPV +BatGWP * N/3 * Cbat + VN_powergridCO₂ * 

Gridimport (kWh/year) * N = 62593500 (kgCO₂eq) 
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In two cases, the environmental impact assessment index in Case 2 is lower than 

2 times the index in Case 1. This confirms that the proposed methods not only 

lower electricity bills but also support environmental objectives for low-carbon 

buildings. 

4.5. Conclusions of Part 4 

Part 4 applied the proposed modelling and optimization framework to two case 

studies in France (Greenhouse testbed) and Vietnam (VHH office building) to 

design low-cost, control-oriented energy management strategies for nZEBs. 

On the Greenhouse platform, an online PV production model was developed and 

validated against monitored data.  Annual PV generation reaches about 406 kWh, 

corresponding to about 10% surplus. The applied control strategy improves on-

site self-consumption, avoids battery oversizing. The pump operating time 

extends (2 hours) and local production almost meets the demand (γload = 0.9).  

In the VHH office building, the same modelling approach is combined with a time 

of use (TOU) tariff to minimize the electricity bill and assess environmental 

impacts. The baseline building without PV, then adding PV and battery storage, 

turns the building into a net exporter, with the greatest reduction in daily 

electricity costs and a significant decrease in the annual GWP index. 

The proposed low-cost IoT-BEMS, combined with simple yet powerful 

optimization tools, can deliver fast computations and quantitative guidance for 

PV–battery sizing, load control, and tariff-aware operation.  
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Part 5. Conclusions of Thesis 

The thesis presents a practical low-cost IoT platform for monitoring, improving 

data quality, and optimizing energy management towards nZEBs. Low-skilled 

users can deploy the platform, and it is suitable for conditions in Vietnam. 

Contributions of the Thesis: 

 Proposed implement roadmap a Low-cost IoT-BEMS platform with 

RF24/ZigBee/Z-Wave/Wi-Fi integration, time series database and real-

time dashboard; ready to expand and interact with existing systems. 

 Proposed a data quality assurance framework based on data fusion process 

and data quality monitoring with online GPR for real-time data 

compensation. 

 Propose energy models, optimization algorithms and optimal control 

strategies focusing on increasing self-consumption through energy storage 

system (ESS) and controllable load. 

 Fast calculation model suitable for low-cost hardware; simulation scenarios 

support user planning and operational decision-making. 

 Validation through case studies: (1) VHH testbed (in Vietnam): comparison 

of three building configurations; real PV with ESS options optimal results 

when combined with contextual load control. (2) Greenhouse testbed (in 

France): development of online PV forecasting model; at multiple 

resolutions to assess nZEB energy balance; load matching analysis shows 

demand of ESS to compensate for in-day fluctuations; maximizes self-

consumption strategy. 

Limitations of the Current Work 

 The empirical evaluation is conducted on a limited number of buildings, 

and over relatively short monitoring periods. For multi-building, multi-

climate and multi-season variability have not yet captured. The behavioral 

dataset is modest, which constrains the analysis of occupant-related effects. 

 In the study, the integration of control strategies and energy storage 
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scheduling is only explored in a simplified way. It does not yet address 

complete multi-objective optimization or detailed security privacy 

constraints. 

 The dataset and implementation are primarily used internally for the case 

studies; open data/code releases and systematic benchmarking against other 

approaches are still limited. 

Future work: 

 Expand multi-building/multi-climate/multi-season scale; increase 

behavioral sample size. 

 Integrated predictive control, optimize multi-objective ESS, and enhance 

security–privacy. 

 Promote open source/data for community reproducibility, comparison and 

improvement. 

The thesis connects low-cost IoT devices, high-quality data, and fast model–

optimization–control algorithms, and also adopts a user-oriented design. Together, 

these elements enable smart, efficient, and sustainable buildings that advance 

nZEB goals in Vietnam's energy context. 

This work is supported by HaUI, VHH, IES, and G2ELab during my internship 

there. The data in this report has been reviewed and permitted by Dr Dang Hoang 

Anh - PI of HaUI's projects, Mr Bui Van Cong - PI of VHH's projects, and Prof. 

Benoit Delinchant – Greenhouse project, France. 

The Thesis has been granted permission by VHH to use the data, system 

architecture and experimental results obtained from the VHH platform.           
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