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Abstract

Nearly Zero-Energy Buildings (nZEBs) play an essential role in reducing energy
consumption and CO: emissions. However, the nZEB application faces technical issues,
investment costs, and the complexity of user behavior, building architecture, and grid
constraints. Vietnam has a high potential for rooftop solar development. New energy
policies encourage on-site self-consumption and expand the application of nZEBs. In
the country, the construction sector has developed significantly over the years, but
research on building energy has been limited due to insufficient building data.

Based on a practical approach, a roadmap for a low-cost 10T platform for Building
Energy Management was developed. It uses loT-based WSN architecture, open
hardware and open-source solutions to reduce costs and technical barriers and explicitly
considers user behavior, which strongly influences system adoption and performance.
This study proposed a two-level data quality framework for a low-cost 10T-BEMS to
improve the reliability of analytics and control services. At the single-sensor level, it
uses accuracy tests and virtual sensors, and at the network level, it applies Al to impute
missing data in real time. Additionally, this work introduced lightweight energy models
and nonlinear optimal control algorithms that can run on low-computing systems (such
as Raspberry Pi). These solutions are tested in real buildings with technologies and grid
constraints. The lessons from experimental case studies in France and Vietnam are
summarized to guide the adaptation of IoT solutions to local contexts.

Overall, the study contributed to the development of low-cost 10T-BEMS platforms
towards widespread nZEB applications in Vietnam.

Keywords: Buildings, nZEBs, WSN, loT, energy modelling, optimal control.
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Tom tit

Cong trinh tiéu thu nang lugng tiém can khéng (nZEB) dong vai tro quan trong trong
viéc giam muc tiéu thu nang lugng va lugng khi thai CO.. Tuy nhién, viéc rng dung
nZEB dang gap phai cac van dé ki thuat, chi phi dau tu, su phic tap trong hanh vi nguoi
dung, kién tric cdng trinh va cac han ché vé luéi dién. Viét Nam c6 tiém ning l6n dé
phét trién dién mat troi 4p mai. Cac chinh sach ning lugng méi khuyén khich ty tiéu thu
tai chd va ma rong ting dung nZEB. Mic du, nganh xay dung da phat trién dang ké trong
nhitng ndm qua, nhung nghién cru vé ning luong toa nha con han ché do thiéu di liéu
vé toa nha.

Dua vao tiép can thuc tién, mot 16 trinh cho nén tang 10T chi phi thap danh cho Quan ly
Ning luong Toa nha da duoc phét trién. N6 sir dung kién triic mang cam bién khong
day dua trén cong nghé l1oT, phan cirng md va cac giai phap ma nguon mé dé giam chi
phi va rao can k§ thuat, dong thoi xem xét rd rang hanh vi nguoi ding, yéu té anh huong
manh mé& dén viéc &p dung va hiéu suit caa hé thong.

Nghién ctru nay dé xuat mot khung chat lwong dit liéu hai cap cho hé thong 10T-BEMS
chi phi thiap nham cai thién do tin cay cua cac dich vu phan tich va diéu khién. O cap do
cam bién don, no sir dung cac bai kiém tra do chinh xac va cam bién ao, va ¢ cap do
mang, n6 ap dung tri tué nhan tao (AI) dé dién dir liéu bi thiéu trong thoi gian thuc.
Ngoai ra, nghién ctru nay da gigi thiéu cac mo hinh nang luong gon nhe va cac thuat
toan diéu khién téi wu phi tuyén cd thé chay trén cac hé thdng tinh toan thip (nhu
Raspberry Pi). Cé4c giai phap nay duogc thir nghiém trong cac tda nha thuc té véi cac
cdng nghé va han ché vé ludi dién. Céc bai hoc tir cAc nghién cau trudng hop thuc
nghiém & Phap va Viét Nam duoc tom tit dé hudng din viéc &p dung céc giai phéap loT
vao bdi canh dia phuong.

Nhin chung, nghién ctru nay di dong gop vao su phat trién cua cac nén tang l1oT-BEMS
chi phi thap hudng téi tng dung rong rai trong cac tda nha ning luong gan bang khong
(nZEB) tai Viét Nam.

Tir khoa: Toa nha, nZEB, WSN, IoT, mé hinh héa ning luong, diéu khién téi wu.
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Part 1. Introduction

1.1. Energy context

1.1.1. Energy context in the world

An increase in global energy demand, resource depletion, energy supplies and
environmental pressures are currently a concern for governments, organizations
and individuals. In 2023, global energy demand is at a very high level, with total
global primary energy demand around 640 EJ [1]. According to the APS scenario,
fossil fuels (oil, coal and natural gas) still account for around 80% of total primary
energy supply, while modern renewables provide only about 12% and nuclear 5%
[1]. Although fossil fuels still account for a very high proportion, they are
expected to be depleted in a short time, in detail, about 40-50 years for oil, 50-60
years for natural gas, and 100-120 years for coal [2]. The countries need to
accelerate the energy transition and improve energy efficiency globally to achieve

SDGT targets and net-zero emissions [3].
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The data in the IEA report show global efforts in implementing energy efficiency
solutions [1]. Figure 1 shows that the pace of energy intensity improvement has
slowed to about 1% per year in 20222023 [1]. It is still far below the required

scenarios (around -2% per year for STEPS, -3% per year for APS, and -4% per
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year for NZE) [1]. These values reflect different levels of policy effort on energy
savings. The scenarios also differ in their cumulative effect on energy demand.
As shown in Figure 2, the total expected energy savings from 2023 to 2030 are
about 40 EJ in STEPS, around 90 EJ in APS, and more than 100 EJ in the NZE
scenario [1]. In all scenarios, “technical & material efficiency” and
“electrification & renewables” make the largest contribution, while the other
levers play a supporting role [1]. Together, they point to the key actions needed
towards a net-zero energy pathway.
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Figure 3. The annual change in CO2 emissions from 1990-2023 [4]

Figure 3 shows global CO2 emissions from 1990 to 2023 [4]. They rise almost

continuously over this period, reaching about 40 billion tons per year in 2023 [4],
with only a slight drop around 2020 due to COVID-19. Overall, emissions remain
very high. According to the Energy Progress Report 2024 [5], the world remains
far from achieving the 2030 sustainable energy targets. Furthermore, progress in
renewable energy use and energy efficiency remains slow [5]. International
finance for clean energy remains insufficient and unequally distributed [5].
Therefore, the countries need to deploy stronger solutions to achieve their net-

Zero energy targets.
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1.1.2. Energy context in Vietham

Vietnam's economy continues to consume energy at a relatively high level
compared to the regional and global average [6]. In 2023, total final energy
consumption (TFC) was around 2.9 EJ, with oil (~33%), electricity (~31%), and
coal (~23%) accounting for the main shares [6]. Industrialization, urbanization,
and the rapid expansion of buildings are driving up electricity demand. Between
2000 and 2023, per capita electricity consumption increased by 771% [7].
Electricity demand increased by more than 4% in 2023 and is projected to increase
by approximately 7% annually from 2024 to 2026 [8]. Coal remains the primary
fuel, accounting for about 45% of electricity production in 2023, leading to about
293 MtCO: in emissions (5.6 times higher than in 2000) [9], [10]. Renewable
energy sources (excluding hydropower) accounted for only about 16% of
electricity in 2023 and are expected to increase to 19% in 2026 [9]. However,
Vietnam's energy intensity is still high, about 3.2 GJ/1 USD PPP (2015) in 2023,
belonging to the high group in the Asia-Pacific region [6].

During 2019-2021, the FIT mechanism supported the development of large-scale
solar projects, particularly in provinces with high resource potential, such as Ninh
Thuan and Binh Thuan [9],[11],[12]. However, high-density renewable energy
deployment has led to local grid overload and congestion, resulting in challenges
in reduction and operation [12],[13]. These indicate that Vietnam needs to
strengthen the grid promptly, operate the system more flexibly, and place greater

emphasis on distributed renewable energy sources [11][12].

In 2024, the Government issued Resolution No. 135, which promotes rooftop
solar for self-consumption [13] to reduce pressure on the power grid and
emissions. Long-term strategies such as Power Development Plan VIII (PDP8)
and national resolutions on climate and energy [14], [15], [16], [17], [18] have set
a clear roadmap for Vietnam to build a safer, lower-carbon power system and

move toward a net-zero emissions target by 2050.
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1.2. Building Energy issues

1.2.1. Buildings energy consumption in the world

In 2022, energy use for operation in building sector accounted for approximately 30%
of global final energy consumption (of which the residential sector accounts for 21%).
Building floor area increased by approximating 25% between 2010 and 2022 and is

expected to keep growing rapidly if no effective control measures [19].

Final energy Building Fuel type
150 (EJ)

120 Il

60

0 rll,,l,l*I,I,I l IlIVIl

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

*x

-]

m Coa = Oil m Biamass (lraditional)
= Commercial heat Renewables Nalralgas
m Electricity

Figure 4. Energy consumption of buildings by fuel type (2010-2022) [20]
In Figure 4, during the period 2010-2022, total energy consumption in buildings
increased from over 100 EJ to nearly 130 EJ (an increase of almost 30%) [20]. In
this growth, the share of electricity has increased, but coal, oil, and traditional

biomass still dominate, while modern renewables have only grown slowly.

Building and construction sector emissions (including “embodied” of new
construction) accounted for about 37% of total global energy & industrial process
emissions [20]. From 2010 to 2022, total CO2 emissions from building operations
fluctuated little, ranging from 9 to 10 GtCO: per year. This figure represents only
a little more than half of the reduction needed by 2030 [19].

Figure 5. Demonstration of CO2 emissions in buildings during 2010-2022 period [20].
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Figure 5 shows that CO. emissions from the group using indirect energy
(primarily electricity purchased from the grid) still account for a significantly
higher proportion than the other group [20]. These observations indicate that
reducing emissions in the building sector requires combining electricity savings
with lower building energy intensity and a higher share of clean energy in the

national power system.

However, energy intensity in the global building sector has improved very slowly.
During 2015 — 2022, it decreased only slightly, from about 153 kWh/m? to ~145
kWh/m2, The rate of energy efficiency improvement by 2022 was still less than
50% of the rate required for NZE in 2030 [20]. The contribution of renewables to
building energy demand remains limited. In 2022, modern renewables supplied
only about 6% of final energy use in buildings, which is roughly one third of the
level required in the NZE scenario by 2030 [19].

Meanwhile, global floor area growth is expected to increase by approximately 15%
by 2030, with more than half of that increase coming from emerging and
developing economies (including Vietnam) [19]. This suggests that future energy
demand in the building sector will rise primarily in these regions. Consequently,
the policies and technological solutions adopted there will significantly influence

global energy trends in the construction industry.

1.2.2. Buildings energy consumption in Vietnam

According to the energy efficiency diagnostic report, buildings in Vietnam are
among the most significant sources of electricity consumption. Buildings
accounted for about 39% of national electricity consumption, with most coming
from residential and administrative buildings (approximately 34%) and

commercial buildings (5%) [21].

The IEA's PDP8 scenarios forecast Vietnam's electricity demand to continue to
increase sharply, from about 250 TWh in 2022 to 415 TWh in 2030 and 860 TWh
in 2050 [12], with the building sector accounting for more than 40% [12]. This

shows that buildings are the main component of Vietnam's total energy demand
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in the future.
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Figure 6. Buildings stock projections growth rate in Vietnam [21].
During 2010-2020, the construction industry grew at nearly 6%/year, higher than
GDP growth (~5.5%) [21]. The fact that the construction growth rate has been
increasing faster than GDP indicates that the building stock is expanding more
rapidly than the overall economy. In particular, multi-unit residential buildings

account for the largest share of the floor area (see Figure 6).

Vietnam has issued the National Standard on Energy Efficiency in Construction
QCVN 09:2017/BXD and other policies to promote energy-saving and low-
carbon construction projects. However, implementation and enforcement still face
many challenges [22]. In recent project reports, audit results indicate that many
office and commercial buildings operate above recommended standards,
indicating significant energy-saving potential [21],[23]. However, data on
building energy intensity (EUI) are sparse and incomplete. They mostly come
from a few case studies and outdated datasets. This indicates the urgent need to
improve measurement, monitoring, and data collection to quantify savings better

and design future NZE solutions.

1.2.3. nZEBs - For sustainable energy development in Vietnam
Globally, nZEBs are understood as buildings with very high energy efficiency,
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where the remaining energy demand is supplied mainly by on-site or nearby
renewable sources [24], [25]. In Vietnam's building energy sector, analyses
indicate that building energy consumption is currently high but can be reduced
through practical solutions, such as nZEBs. Furthermore, Vietnam has the
potential to develop nZEB thanks to its rich solar resources. The average solar
radiation is up to 5 kWh/mz2/day in many regions, and the technical potential of

solar power is estimated at hundreds of GW [26].

In the ASEAN region, Vietnam is among the leading countries in deploying
rooftop PV in the building sectors. Vietnam has issued numerous policies,
including the QCVN 09:2017/BXD standard for energy-efficient buildings, as
well as national strategies and programs prioritizing energy saving, renewable
energy, and net-zero emissions targets [14], [15], [16], [17], [18]. In particular,
Decree No. 135/2024/ND-CP, issued in 2024, creates favorable conditions for
Vietnamese buildings to self-supply part of their energy demand through on-site
consumption [8]. These provide an essential foundation for the future deployment
of nZEBs in Vietnam. However, QCVN 09:2017/BXD sets only minimum
requirements for energy efficiency and has not yet established a dedicated nZEB
standard with target EUI values and mandatory shares of renewable energy. The
reason is that the data are incomplete, scattered, and very outdated, making it
challenging to design and evaluate nZEBs. Meanwhile, Europe has a relatively
clear nZEB definition framework, specified by type and climate zone [26]. Many
studies on nZEBs have been conducted successfully in Europe, where buildings
are subject to strict energy-efficiency regulations [25], [27]. These studies
highlight that the nZEB concept must be adapted to local climatic and economic

conditions in each country.

IEA studies [28] indicate that the efficiency of Net ZEB also strongly depends on the level
of load and source matching and how the building interacts with the grid. In the studies,
calculating metrics such as the Load Match Index and Load/Supply Cover Factor requires

detailed measurement data at hourly or even minute intervals.
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Overall, to achieve the goal of (nZEB) in Vietnam, building a reliable building
monitoring and data collection system is essential. This system will serve as a
foundation for assessing the current operational status and proposing effective

building energy management solutions.

1.2.4. Building energy management

1.2.4.1. Modeling and optimal control — Need monitoring parts in Buildings

In building energy management, monitored data can be used to more efficiently
coordinate energy use from the grid, on-site batteries, and other distributed

renewable sources.
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Figure 7. MPC Basic Control Loop (Source: https://www.mathworks.com)

In Figure 7, the Model Predictive Control (MPC) principle indicated the need for
measured data. Modelling methods and optimization techniques all require sensor
data in buildings [29], [30]. The study in Artiges (2016) shows that applying
Model Predictive Control (MPC) to improve building energy performance

requires high-quality monitoring and measurement devices in the building [30].
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Figure 8. Modeling Topology for Building Design and Operation [2] [29], [30].
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Figure 8 illustrates the process of building a model from a real system to
application objectives. Data is collected, preprocessed, then the model is selected
and developed in three directions (experimental, analytical, and numerical model)
[2]. The numerical model poses practical challenges because it is complex and
requires difficult to obtain physical parameters. The data-driven models,
including both experimental and analytical models, are preferred for their
simplicity. The statistical data in [31] indicated that most of the energy models

studies use a real monitoring system.

Then, the results are used for computing and applying control, simulation, design,
and optimization in practical. There is an iterative process to improve the accuracy
and reliability of the real system. In some studies, the monitoring components
could enable a specific diagnosis to optimize the building’s renovation [32].
Furthermore, it also allows the realization of occupants’ behavior models [33].
Monitoring indoor conditions (T, RH, CO-, energy sensors) and weather
conditions should help better understand behavior regarding consumption,

consequently, the level of use of PV generation and battery energy storage [34].

1.2.4.2. Monitoring platforms- The state of the art

Monitoring platforms are increasingly fundamental components of building
energy management. Recent studies show that energy and environmental
measurement data contribute to performance assessment, near-zero energy
building (nZEB) design, and advanced control [35], [36].

The current trend is shifting from single-point measurement to multi-point, multi-
sensor, high-resolution monitoring methods control [35]. Many buildings now
utilize Wireless Sensor Networks (WSNs) and smart electricity meters to monitor
energy and indoor conditions. Such systems include sensor nodes, gateways, a
central data system, and a user interface [35], [36]. For buildings to interact
effectively with the grid, the monitoring systems require an additional

bidirectional communication infrastructure with the grid [37].
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Numerous studies have proposed “low-cost” monitoring platforms using standard
microcontrollers (Arduino, ESP32 [38], Raspberry Pi) and inexpensive sensors
[35], [36]. This approach demonstrates the benefits of extensive monitoring across
multiple areas within a building at an acceptable budget. Typically, a low-cost
system has a total deployment cost under a few thousand US [36], suitable for

small to medium sized building applications.
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Figure 9. Schematic Diagram of Energy-Efficiency Management [36]
Figure 9 [36] shows that effective energy management requires a “Low-cost
monitoring platform” to collect and store data on building operations. Continuous
monitoring of energy and environment creates a database that allows the
construction of a characteristic consumption profile over time, weather and
operating schedule. From there, managers can plan more rational equipment operation

and maintenance, improve efficiency, extend equipment lifespan and reduce costs.

However, the use of low-cost monitoring technologies poses challenges for data
quality, requiring additional machine learning techniques [39], [40]. Another
challenge is that building performance is shaped by occupant behavior. As
monitoring systems combine sensor data with user actions, user-centered

strategies that engage occupants become essential for practical energy
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management [35], [36], [41].

Overall, monitoring systems are providing the primary data source for analyzing,

forecasting, and optimizing building energy consumption.

1.2.4.3. Building energy management barriers

Despite recent advanced in monitoring platform, building energy management are
still limited adoption in Vietnam. Multiple barriers to energy efficiency technologies
have been identified in previous studies [42], and broader challenges have been
highlighted in the National Energy Efficiency Program 2019-2030 [43].

The lack of building-level energy management tools is one reason the energy-
saving potential has not been fully realized [43]. A significant barrier is the
missing and scattered building measurement data. It is available only for a few
large buildings. In most small to medium sized buildings, users can access only
total meter data and bills through an EVN application. However, they cannot query
their energy data in real time. The critical data, such as indoor conditions, equipment status,
and user behavior, have not been systematically collected, thereby limiting the ability to

evaluate and optimize building operations [36].

The installation of monitoring systems in existing buildings remains constrained
by investment costs and user participation [36]. The IEA report [37] shows that
in ASEAN (including Vietnam), smart sensors, automation systems, and energy
management are now implemented only in pilot projects. The lack of data and
user feedback mechanisms remains a significant barrier to transferring
information into practical actions (such as adjusting operations or changing
energy use habits) [35], [36].

The advancement of 10T technologies provides a practical way to overcome
several of these barriers by supporting open ecosystems, low-cost sensing, and
improved connectivity in buildings [44], [45]. However, it is still difficult to
deploy in practice because the available technology, user skills, and budgets differ

Cross country.
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Therefore, the following sections examine how to deploy a building energy

monitoring system towards nZEB in Vietnam.

1.3. Objectives of the thesis
The aim of thesis will focus on Nearly Zero Energy Buildings applications in

Vietnam. There are two main objectives of the thesis as below:

Obijective 1: Proposing solutions to launch an IoT platform in Buildings at low-cost
- Proposing the low-cost monitoring platform bases on loT technologies.
Allowing low-skill users could easily develop and operate platform through
open-hardware and open-sources.
- Proposing methodologies for ensuring measured data quality.

- Public energy efficiency awareness in community by cooperation projects.

Objective 2: Practical energy management for nZEBs:
- The IoT platform implementation.
- Proposing models and optimization technique adapted to the low-cost platform.

- Proposing optimal energy management strategies.

1.4. Challenges to achieve the goals

This work must deal with some challenges such as:

- Low-cost IoT platform and system quality.
- Complicated energy modeling and optimized control methods.
- Energy management strategies adapt to technical constraints, users and

energy conditions in local regions.

1.5. Structure of the thesis report
Part 1 — Introduction
- Presents the energy context, with a focus on the building sector, which
contributes to energy consumption and CO: emissions.
- Review on Building Energy Management Systems to find gaps and challenges.
- States the objectives of the thesis.

- Summarizes the structure of the manuscript.
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Part 2 — A practical route for launching an 10T platform for building
energy management

Analyses loT and wireless sensor network (WSN) technologies for building
applications and proposes a low-cost l0T-BEMS architecture.

Proposes a data quality assurance framework (including single sensor level
and sensor network level), including accuracy testing, correlation analysis,
fault detection and data compensation using machine-learning models.
Describes the design, deployment of the loT-BEMS platform on real
testbeds, and provides practical guidelines for non-expert users in Vietnam

to implement energy monitoring and basic analytics.

Part 3 — Implementation of the loT-BEMS platform - A case study

Implements the proposed 10T platform for BEMS on a real office building
(VHH) in Vietnam, using low-cost hardware and time-series data.
Develops data-driven analyses for environment, user behavior, and Energy.
Proposes energy strategies relating behavior and analysis.

Estimating energy efficiency of project

Part 4 — Optimal energy management strategies toward nZEBs

Introduces simplified energy models for PV production, battery storage and
loads.

Presents optimization problems and algorithms adapted to low-cost
computation (e.g. SQP-based methods and the NoLoad tool).

Applies the modelling and optimization framework to two case studies: an
aquaponics greenhouse testbed in France and the VHH office building in
Vietnam.

Investigates energy balance, PV-battery system sizing and operation
strategies with TOU, and quantifies self-consumption, electricity bills and

CO- emissions.
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Final part — Conclusions of Thesis

Summarizes the main scientific and practical contributions of the thesis in
loT-BEMS design, data quality assurance and energy management.
Discusses the limitations of the current work and future deployment.
Highlights the collaborations with Vietnamese and French universities and

research projects that supported to the thesis.
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Part 2. A practical route for launch an lIoT platform for building
energy management

2.1. Overview

2.1.1. 10T and 10T-BEMS: definition and scope

According to the report of Asian development bank [44], the definition of Internet
of Things (loT) identified as: “An loT is a network that connects uniquely
identifiable ‘Things’ to the Internet. The ‘Things’ have sensing/actuation and
potential programmability capabilities. Through the exploitation of unique
identification and sensing, information about the ‘Thing’ can be collected and the

state of the ‘Thing’ can be changed from anywhere, anytime, by anything.”

The term loT-enabled BEMS (loT-BEMS) refers to Building Energy
Management Systems using connected sensors/actuators and gateways to monitor
and control energy related subsystems (including Loads, on-site PV and storage)
[45], [46].

The present work focuses on small and medium-sized buildings, optionally
equipped with PV and/or battery storage, and typically operated by low-skilled
users. In this scope, 10T-BEMS deployments must remain cost-effective and
simple enough to be installed and maintained by non-experts, while providing
sufficient data for Building energy services. To ground the analysis, several 10T-
BEMS case studies in France and Vietnam are considered. These deployments
provide the empirical basis for defining and evaluating the platform architecture
(Section 2.2) and data quality (Section 2.3).

2.1.2. 1oT-BEMS platform architecture: opportunities and challenges
In the BEMS, loT platforms are organized into multiple layers that connect smart
sensors, meters, and controllers to back-end services. Reference IoT architectures
for the building sector, such as those discussed in [45], [47], [48] illustrate a
familiar pattern: sensors convert analog signals into digital signals via ADC/DAC,;
gateways collect and pre-process data and communicate with data centers or cloud
services, and send back commands to actuators using MQTT; block data center is
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configured to manage, analyze, and security in real-time.

From building owners and operators' point of view, the primary motivation is to
reduce energy costs while maintaining continuous monitoring and control of their
facilities. 10T technologies enable this by connecting physical components
through sensors, actuators, and software to exchange data with other systems and
end users on a platform. At a larger scale, such platforms also support smart-city
integration and emerging energy services [45]. Wireless sensor networks (WSNS)
are a core enabler in many loT architectures, with documented benefits in recent
studies [49], [50]: Lower deployment effort and cost; installation flexibility to
existing infrastructure; reduced node power consumption thanks to advances in

low-power electronics and communication protocols [30], [49].

Future buildings are expected to increase device connectivity to 0T, widely
deploy WSN, functionalize components, and adopt advanced control to improve
overall performance [44], [45]. However, three practical challenges in the
adoption of WSN-based 10T-BEMS in real buildings, especially in small and

medium-sized premises operated by low-skilled users:

e Cost: hardware, installation, operation and maintenance must remain
acceptable for small and medium-sized buildings.

e Reliability: measurement accuracy, wireless coverage, interference, fault
tolerance, battery lifetime and interoperability all affect the stability of data
flows and control actions [45], [49]. Poor data quality directly degrades the
performance of forecasting, control and energy services.

e Low-skilled users: limited expertise in 10T, technologies and data analytics,
which constrains how complex the platform, configuration procedures and

diagnostic tools can be in practice [46].

These considerations motivate the simple, interoperable 10T-BEMS architecture
adopted in this thesis, based on low-cost WSNs. The following section (Section
2.2) details the system architecture and (Section 2.3) introduces the data quality

framework.
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2.2. Development of loT-BEMS platform

This section presents the overall workflow for implementing the proposed low-
cost 1oT-BEMS, and shows how it is applied in practice in the case studies (see
Figure 10).
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Figure 10. Overall workflow of the proposed low-cost IoT-BEMS implement [36]
In Figure 10, first, the building profile is collected (location, architecture, internal
loads, occupancy schedule, weather conditions and user preferences). Low-cost
sensors then acquire environmental and energy data such as temperature, humidity,
light, motion, PV, battery and grid power. A data-fusion layer aggregates these
raw measurements into higher-level states (user behavior, HVAC and lighting
status, door/window status). These variables are sent to the modelling and
optimal-control layer, which computes commands for actuators (air-conditioner
and lighting controllers). In the proposed workflow, the data quality (DQ)
framework is embedded in the feedback loop to support maintenance. DQ-L1
outputs (per-sensor fault labels and health indicators) are aggregated in the
feedback block and forwarded to DQ-L2 for cross-sensor consistency checks and

fault diagnosis. DQ-L2 results then drive maintenance actions
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(test/calibrate/replace sensors). After DQ-L2, the fused data become a cleaner,
validated stream and are sent to the next block for more reliable processing. The
platform finally provides building energy services: monitoring dashboards,

maintenance alerts, basic control suggestions and energy reports.

The workflow shows that most of the complexity is handled automatically by the
platform. Low-skill users without specialized technologies or energy management

interact with the right-hand “services” block, while others run in the background.

2.2.1. System Design

In most projects, the building’s profile is required as the first step in defining the
platform's boundaries and conditions. It includes the following information fields:
project information includes targets, timeline and budget; Building data includes
occupancy, operation schedules, energy consumption/production, and weather
conditions; Building architecture includes location, floor area, type, age and
function; User priorities includes cost, life-cycle, comfort and environmental
concerns; Standard references: international standards and national building

energy-efficiency codes.
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Figure 11. System Architecture for Building Monitoring and Control [43].
Figure 11 shows the 0T platform architecture tailored to these dynamic energy

and environmental management requirements. Based on the building profile, the
proposed architecture comprises [43]:

- Smart sensors for monitoring energy and environmental conditions (energy
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meters, temperature and light sensors, motion sensors); Smart actuators for
controlling electrical devices (lighting, air-conditioning and plug loads);

- A gateway that communicates over multiple interfaces (Wi-Fi, RF24,
ZigBee, Z-Wave, Bluetooth, etc.). In our implementation, the MQTT
protocol is used to minimize network bandwidth;

- A computer (Raspberry Pi) acting as a data center and hosting embedded
algorithms, complemented by a cloud component for database management;

- Open-source tools for time-series storage and visualization (InfluxDB,
Grafana) and user interfaces (OpenHAB);

- Constraint inputs related to electricity price, sources, and storage and user
preferences.

The next subsection presents the loT-based wireless sensor network, from sensor

choice to network design and communication protocols.

2.2.2. loT-based wireless sensors network

2.2.2.1.Sensor selection
Wireless sensor nodes available on the market provide a wide range of functions

and communication technologies. Sensor selection should consider the physical
quantity to be measured, required accuracy, building type and installation location.
In the IoT-BEMS platform, sensors are grouped into three main categories:

(1) Environmental sensors (Temperature, humidity, and luminosity sensors) to
adjust cooling, heating and lighting according to ambient conditions;

(2) Occupancy sensors (motion detectors, door contact sensors) to infer building
occupancy and usage patterns;

(3) Energy sensors (Current, voltage, power, and energy) to monitor electrical
consumption and power sources, including the grid and photovoltaic (PV)

systems.
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Table 1. Main characteristics of sensors deployed in the 10T-BEMS platform

Location Variables Sensor type Range Accuracy  Resolution Interface Category
Indoor room 'rI;eIZIipveerature, Environmental —40+80 °C; +0.5 °C; 0.1°C; 12C/ RE24 IS'eOI}N_COSI’
(BME280) . sensor 0+100 %RH  *2 %RH 0.1 %RH

humidity developed
Indoor wall ::IZ:FVE erature, Environmental  -20+50°C; +0.3°C 0.1°C; Zidbee Low-cost
(M1, M2) . sensor 0+100 %RH *3% RH 0.1 %RH g commercial
humidity
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The main sensors and meters used in the 10T-BEMS deployment are summarized in
Table 1. The table reports the measured variables, nominal range and accuracy,
sampling period, communication interface, and low-cost category (self-develop or

commercial sensor).

ENVIRONMENT SENSOR | MICRO WIRELESS
- Temperature CONTROLLER MODULE
- Humidity < ESP32/Arduino 12C/SPI
- Lighting Raspberry Pi (RF24, Zigbee,
BME280,BH1750 | B | [TUvvcccttvcctttttees Zway, Wifi...)
Monitoring
OCCUPANCY SENSOR power supply
- Motion
- Contact <
PIR HC-SR501, magnetic door/window
ENERGY METTER Powglznset:;m.v
- AC meter <
-DC meter AD/DC Adapter

AC Pzem-004T, DC Pzem-003

One wire, 12C,
UART/RS485

Figure 12. Architecture of the Environmental — Occupancy — Energy Sensors

Figure 12 illustrates the sensor’s architecture within the [oT-BEMS platform,
comprising a power supply unit, a sensor module, a microcontroller that integrates
algorithms for optimal sensor operation, and a wireless transceiver for data
communication.

To ensure operational reliability, sensor development follows four steps: (1)
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hardware design, (2) algorithm development and firmware programming, (3) final

assembly, and (4) packaging and functional testing.
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Figure 13. Development of Multi-sensors in our projects

There are two types of multi-sensor, depending on the power supply (with/without
a battery). Figure 13 illustrates the physical implementation (design, assembly,
and package) of the multi-sensor node (measuring relative humidity, barometric

pressure, and ambient temperature) used in our projects.
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Figure 14. Programing flowchart of RF24-based sensors
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In Figure 14, the firmware architecture is standardized for all RF24-based sensor
nodes. Figure 14.a describes the generic setup phase: importing libraries,
declaring global variables and functions, configuring MCU /O pins, initializing
communications (Serial, I12C, and SPI) and starting the RF24 network. Figure 14.b
details the main loop: reads measure data, checks whether a value change or
timeout occurs, updates variables, resets the timer and sends a new data packet to
the server/cloud. At the end of each cycle, the node enters a low-power or idle
state (depending on the power supply), which limits energy consumption while
keeping the network connection active. The flowchart simplifies firmware
development and maintenance. It therefore fits the requirements of the proposed

low-cost lIoT-BEMS, allowing pre-configured sensor nodes to operate reliably.

Experiment 1: Developing wireless sensors with a battery power supply
The experiment details how a battery-powered RF24 wireless sensor node was

developed for building environmental monitoring. To achieve reliable data
acquisition, sensors are deployed at designed locations to collect critical
environmental parameters. The technical design needs to use low-power hardware
(BME280 low-power sensor) and an optimal program (deep sleep, control
sampling rate and sampling frequency). For instance, low-power mode is to put

the sensor in sleep with a time sleep relating to a minimal sampling frequency.

Table 2: Main technical requirements for Battery-Powered Sensor

No  Requirement Description

1 Location Installed in critical areas such as around wall, doors and windows.

2 Power Supply Minimal reliance on external electricity.

3 Energy Efficiency Cl\i/;ir;i?;g n\]/\ilssriléi:)g frequency (nodes only activate for schedule or
4 Battery Lifetime A battery can supply power for the sensor's long-time operation.
 Conmuniaion  SPON vt s prtocos (e, RF26, e ) o
6 Data quality Maintain sensor precision and stability.

7 Reliability and Reliable operation on diverse environmental conditions; easy to

Maintenance replace or maintain.
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In Table 2, basing on practical work, seven technical requirements for Battery-

Powered Sensors should be considered.

Experiment 2: Developing a RF24 wireless sensor with the Grid power supply
This experiment presents the development of an RF24-based wireless sensor node
powered by an AC power supply. From a design perspective, it is necessary to
ensure a power supply for the controllers and the critical sensors that run
continuously in the network. Therefore, these nodes must be located near the
building's electrical grid. Enhancing the data sampling rate and implementing
dynamic routing updates are key to improving network reliability. The sensor’s
hardware includes a compact 5VDC power module to minimize design
complexity; an Arduino Pro Mini 5V module serves as the central processing unit;

and an RF24 transceiver module enables wireless communication (see Figure 15).
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Figure 15. Main components of Energy Metter

Figure 16. Energy meter in VHH (RF24 Mesh-Network).

In Figure 16, a wireless energy meter was installed in the VHH platform. The
experiment design maintains devices over the long term by using modular

hardware and an open library [51].
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2.2.2.2.Developing a wireless sensor network

a. A wireless sensor network (WSN) architecture
A wireless sensor network typically comprises sensor nodes, actuators, gateways,

and data processing and storage centers. Sensor nodes collect data and transmit it
through coordinator nodes to a gateway. From the gateway, data is forwarded via
the Internet connections to the data processing and storage center. Users can

manage and monitor the network in real time [49].

MQTT protocols | I

Data concentrator
(Openhab)
Storage and access to data logs
(influxDB)

Arrduino
NRF24L01+ Sensor network

Figure 17. Description of a RF24-Based Wireless sensor network

Figure 17 illustrates an example of an RF24-Based WSN on real platforms, which
integrates open-hardware (Arduino and RF24 modules), a Nano-Computer
(Raspberry Pi), and open-source tools (OpenHAB and InfluxDB) for data

collection, processing, and visualization.

b. Network Topology
Selecting a suitable network topology is essential for improving network performance
regarding energy efficiency, frequency band, or deployment cost. Practically, there are

typical topology types such as (Flat topology, Cluster topology).

Sub-node
Gateway

] -
f feateway f 5ub-n:>‘ -

V/

a) Flat - Mesh b) Flat - Tree

Figure 18. Flat topology (Mesh vs Tree) on HaUI’s platform [37]
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Figure 18 shows the flat structures used to develop the self-developed RF24
network on HaUI’s platform. This topology enabled simple, low-cost deployment
with direct communication paths and minimal management overhead, suitable for

small to medium size building sections.
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Figure 19. Cluster topology (Mesh vs Tree) on VHH’s platform [37]

Figure 19 shows Cluster topologies implemented at VHH’s platform. An
integrated system based on a hybrid WSN network, such as ZigBee (Xiaomi), Z-
Wave AEONTEC, Wi-Fi (ESP32/8266), and nRF24L01+ energy meters.
Clustered organization improved bandwidth utilization and reduced energy
consumption. The combining protocols allowed functional optimization across
different building zones. From practical deployment, key factors requires to

consider when selecting network topologies as follows:

- Using multi-topology integration to meet various monitoring needs for the
system’s flexibility.
- Low-power networks (ZigBee, Z Wave, and nFR24L01+) to reduce
maintenance.
- Multi-protocol integration requires robust gateways and data center
management.
- Using hybrid networks increases reliability and potential system expansion.
Experiment 3: Gateway Development
In the RF24 network experiment, the gateway (node 00) collects sensor data and

effectively sends control commands to each actuator node. Working as a bridge
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between the RF24 and Wi-Fi communication networks, the gateway is necessary

for maintaining data flow and system coordination.

VCC(+3.3V)

ESP8266 NodeMCU + RF241.01 for VHH’s Platform

RF24-Gateway (Tree Network) in HaUI’s Platform RF24-Gateway (Mesh Network) in VHH’s Platform

Figure 20. Development of gateway devices in real projects
To ensure consistent network routing, the gateway must be supplied by an
uninterrupted power source. Gateway devices should be sited in areas with
reliable access to the electrical grid and robust communication links to network
nodes. Figure 20, the gateway is based on a Wi-Fi module (ESP8266) and an
RF24 module, which operates in the 2.4-2.5 GHz frequency band and supports
125 channels, so providing flexibility and scalability for the network.

Experiment 4: RF24-Flat topology development

The topology networks enable real-time data acquisition and direct control of
lighting and air-conditioning systems. This contributes to operational efficiency
and enhanced user comfort. In this work, the topology is deployed following three

steps [52], including (1) Address format in network; (2) Routing Mechanism; (3)
Installation
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Figure 21. Description of RF24-Tree network configuration in a real project
Figure 21 illustrates the RF24-Tree topology configuration implemented for the
office. In the RF24 network, the address format uses a 15-bit octal (base-8)

scheme as follows:

- Router: address 00 is the Base node.

- Lamps in the office: addressed 01-05 are first-level children

- Other devices: addressed 011, 012, 013, 014, 015, 021, 025, and 031 are
second-level child nodes. Each additional octal digit represents a deeper
level in the network hierarchy. For example: Multi sensor nodes (01225,
0225); AC controller nodes (Celling-Aircon: 01125, 0225)

The network architecture allows for reducing routing complexity. However, in the

topology, if a parent node fails, all its descendant nodes will lose connectivity.

2.2.2.3.Communication technologies
a.  Wireless communication protocols

Wireless communication technologies are essential enablers of efficient
monitoring and control in modern buildings. They simplify the installation of
sensors, actuators and controllers. In smart buildings, devices and end users

interact remotely via wireless systems to receive and transmit control commands
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in real time. When selecting a communication technology, several key criteria
should be considered: low cost, low power consumption, ease of use, security,
low interference, interoperability, scalability and accessibility to local markets
[49].
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Figure 22. Flow of the main radio frequency protocols [53]
Figure 22 shows the standard RF protocols in 0T along with key characteristics
such as frequency, range, data rate, power consumption and network structure
[53]. In practice, buildings often use many different communication standards as
users choose devices based on brand and application needs. Each protocol, such
as ZigBee, Z-Wave, RF24, Bluetooth and Wi-Fi, has its own advantages.

On the VHH platform, the system combines ZigBee, Z-Wave, Wi-Fi (ESP32),
and RF24 to increase flexibility and support energy management. Open standards
such as Wi-Fi, Bluetooth, and ZigBee have great potential for building
management, but selecting the proper protocol remains difficult due to frequency

conflicts, node count, cost, flexibility, and power consumption.

b. MQTT protocol

MQTT is an open connectivity protocol for the Internet of Things (I0T) messaging
submitted to OASIS in 2013. It is a lightweight message transport for connecting

IoT devices with limited network bandwidth.
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Experiment 5: MQTT application in WSN’s communication
MQTT is used for communication between gateways and sensor and actuator
nodes. In the experiment, MQTT was applied to facilitate communication

between gateway devices and sensor/actuator nodes.

mMQTT Publish/
Broker Subscribe
(Mos%uitto)
—

Publish/
Subscribe

AN
=

RF24Gateway ESP32 Gateway
Zwave/ Zighee Gateway
©eoeo S
® O

ESP32 Wifi

RF24 Sensor Zwave/ Zighee Sensor Sensors
Network Network

Figure 23. MQTT application communication in VHH’s project

Practical implementation demonstrates that the MQTT publish/subscribe
architecture provides efficient, flexible, and scalable real-time data management.
In the system, an MQTT broker is installed on the Nano computer to handle all
communication. Each MQTT message consists of four main parts: information
about the system layer, a node that sends data, node that receives data and the type

of exchanging message.

. Layer network/sending node/receiving node/message type |

Practical observations highlighted that careful hierarchy design is essential for
maintaining system clarity, scalability, and ease of maintenance as the network

expands.

Figure 23 illustrates the structure of MQTT application within the deployed
VHH’s platform. Sensor nodes act as publishers, sending environmental data
(such as temperature, humidity, and light intensity) to subscribed topics on the
MQTT broker. Simultaneously, gateways subscribe to command topics then send

to actuator nodes.
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2.2.3. Data Visualization and Users interaction

This work used InfluxDB, a time series database suitable for data management,
Grafana facilitates data querying, visualization, and alerting. Multi-sensor data is
combined for data analyzing reliability [53]. The l10T-BEMS platform provides

data to operate Buildings through a user interface or via a Web service.

Experiment 6: Energy Data analysis in VHH'’s platform

The energy consumption are often linked to the user’s behaviors.
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Figure 24. Correlation between consumption and occupancy in VHH's office
Figure 24 shows that the Dispenser is set to operate according to the working
schedule of the day. The lighting system will turn off at the end of working hours,
during lunch break. When analyzing carefully based on other additional data from

the system, this action can be identified in more detail, specifically:

- On September 9, 2020, 11:30-13:00, the user turned off the lighting system.
However, the door and motion sensor value indicated no-one in the room.

- On September 10, 2020, 11:30-13:00, the lighting system was off but the
air conditioner was still on. The door and the movement sensor show that

the user was absent.
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Figure 25. Correlation of HVAC operation vs environment conditions in VHH’s office

Figure 25 shows that the HVAC is operating during working hours, and the heat
distribution in the room. The window (where the TiZ4 sensor is located) absorbs

a lot of heat, so the temperature is always higher than the other in room areas.

Experiment 7: Environment Data analysis in VHH’s platform

Environment conditions effect to how users operate electrical devices in the office.

35-}{'1-{_

p
w
(=]

indoor_tem
N
w

20 A

15 A

T T
Spring Summer Autumn Winter
season

Figure 26. Description of indoor-Temperature distribution by seasons
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In Figure 26, in summer, room has high temperature with high median and IQR
of indoor temperature, which easily triggers HVAC to cool more. However, in
winter, it has the lowest temperatures, with little variation, low median and narrow
IQR. Spring/Autumn has average temperatures, moderate dispersion. Summer
and spring have very high outliers’ points, possibly due to door opening and

closing, high occupancy or set-point temperature.
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Figure 27. Description of indoor-humidity distribution by seasons
Figure 27 shows that Summer median humidity increases and has large variations,
creating a feeling of heat even though the temperature is not too high. Winter
humidity is lower with a low median but large variations, so there are times when
the air conditioner needs to be turned on to dehumidify. Spring-Autumn session
IS more balanced with average humidity, but there are still outliers by fluctuating

weather.

Experiment 8: Correlation data analysis in VHH’s platform
Correlation between sensor data allows for the creation of virtual sensors or data

compensation for missing variables. [36]. Figure 28 shows the data correlation
between temperature sensors and consumption during 1 week in August 2020.
The red color in the figure represents a strong correlation (correlation value>0.9)
between variables. The correlation between Total power and TiZ3 and HVAC
power is relatively high (with correlation values of 0.7 and 0.93, respectively).
This indicates that pair [TiZ1, TiZ2] can be used to compensate for the missing
data of TiZ3 and TiM2; [Total, TiZ3] to compensate for missing HVAC data.
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Figure 28. Correlation temperature and consumption data in VHH’s platform

Experiment 9: Fault sensor detection in VHH’s platform

Data quality assessment and error detection are always challenges in 10T sensor
systems. Some problems affect the accuracy of error warning and system quality
diagnosis. Many errors look like sensor failures, but in fact they are time shift
errors, temporary connection loss, sensor stuck-at constant. Abnormal data are not
caused by sensor errors but by sudden changes in the real environment. This study
proposes a method for data quality analysis based on multi-sensor data correlation
and system operating context. For example:

e Check for sudden large jumps in data values and compare the anomalies
with real environmental data.
e Use correlation between sensors to detect sensors drifting away from the

sensors in the group to diagnose faults and compare context over time.
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Figure 29. Jump events of temperature values during HYAC ON and Door OPEN
Figure 29 shows two unusual events of temperature value increase and decrease

of sensors (TiZ1, TiZ2, and TiZ3). However, the measured data have the same
up/down trend relating to status of air conditioner and door. This trend is

reasonable, there is no error from the physical sensor

1.07 period

N AFTER
[ BEFORE
N DURING

0.8 1

0.6

0.4 4

Correlation (Pearson)

0.2 4

0.0 -

TiZ1-TiZ2 TIZ1-TiZ3 TiZ2-TiZ3
pair

Figure 30. Correlation pair sensors (TiZ1-TiZ2, TiZ1-TiZ3, TiZ2-TiZ3) in one-week
BEFORE, DURING, AFTER from (10/05/2021-30/05/2021)

Figure 30 shows that during the week (May 10, 2021-May 16, 2021) the TiZ1

sensor behaved abnormally, deviating from its correlation with TiZ2 and TiZ3.
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Figure 31. Correlation pair sensors (TiZ1-TiZ2, TiZ1-TiZ3, TiZ2-TiZ3) in one-week
BEFORE, DURING, AFTER from (17/05/2021-06/06/2021)

Nevertheless, in Figure 31 the following weeks, this sensor was strongly
correlated with the other two sensors. The TiZ1 sensor could not damage, but only

temporarily faulty. The two sensors TiZ2 and TiZ3 maintained stable values.

Experiment 10: Lighting system maintenance in VHH'’s platform

Most electrical equipment often operates until it fails or has problems. This factor
received little attention, however is prevalent in many buildings. In real Buildings,
most lighting systems are old and designed over ten years, no changes until fault.
The working time data of electrical devices data could support users’ plans for

maintenance devices (such as repairing or replacing them) on time.
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Figure 32.Working time of Led groups in a year.
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In Figure 32, users could find out that group Led1 has lowest performance while
groups Led2 and Led4 have the best. By monitoring lighting system, users can

calculate time to replace Led.

2.2.4. Buildings energy services
The data-fusion layer described above aggregates measurements data into
meaningful information about the building state. From this foundation, the IoT-

BEMS can provide the following energy services:

Surveillance services. Real-time access to indoor environmental conditions,
energy consumption, PV production, equipment status, sensor power status, and
door/window openings. These data are presented on dashboards for display on

smartphones and PCs, enabling users to respond to abnormal situations quickly.

Maintenance services. Besides fixed maintenance schedules, measurement data
enables early fault detection and the issuance of warnings. This supports
predictive maintenance and helps users plan repair and replacement actions more

accurately.

Control services. Control strategies based on fused data (HVAC, lighting and

plug loads) can improve building performance while maintaining user comfort.

Data analysis and reporting. Historical data support data-driven decision-
making, improve energy management, and provide indicators for broader energy

transition initiatives.

In the next section, we investigate data-quality methods to ensure that these

services operate reliably on the low-cost I0T-BEMS platform.

2.3. Data quality assurance Framework

In a low-cost 10T-BEMS platform, data quality is a prerequisite for reliable
operation of energy services. Data with missing samples, spike noise, drift will
cause errors to propagate to visualization, data fusion, load/PV forecasting, and

control, thus reducing the effectiveness of nZEBs.
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The direct relationship between data errors and the reliability of control strategies
has been emphasized in studies on building energy performance [30] . Therefore,

this thesis proposes a framework to ensure data quality at two levels:

v" Level 1: At single-sensor level [40];
v' Level 2: At sensor network level [54], [39], [55].

Experiments 1-3 in section 2.3.3 validate the effectiveness of the level 1, while
experiments 4-6 in section 2.3.4 validate the level 2. The latter two quality-assured

datasets are used directly for building energy services and case study evaluation in Part 3.

2.3.1. The state of the art

Energy analysis, forecasting, and control models are only reliable when built on
complete and accurate measurement data. In the PV systems, enhanced data
processing and verification are prerequisites for improving the reliability of

performance analysis and system robustness [56].

Recent literature reviews also confirm that low-quality data is the main cause of
performance degradation in sensor-based monitoring systems and Machine

learning models [57].

For building data, dataset characteristics such as sequence length, sampling
frequency, diversity, and especially data quality need to be strictly considered

when building models for energy services [58].

At sensor network level, systematic reviews of sensor data quality have pointed out
typical errors in reliable monitoring including: missing values, spikes/outliers, long-term
drift/bias, stuck-at, and network-level errors such as packet loss bursts, latencyi/jitter, and
time misalignment [50], [57]. These errors break the integrity and temporal structure of

the data — the foundation of energy optimization and forecasting models.
Data errors in low-cost 10T-BEMS often come from the following sources:

v Sensors’ hardware: low-cost sensors are sensitive to manufacturing errors,
aging, environment condition, or hardware design. LCS studies also highlight

the heterogeneity of quality between manufacturers and the need for periodic
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calibration/maintenance [59].

v" WSN transmission network with packet loss, transmission delay and clock
skew cause time series data errors [59].

v Data integration when merging multiple sources in loT-BEMS, heterogeneity
In measurement standards/semantics and representations between devices can
create data inconsistencies [60]; Multi-sensor data often have different
sampling frequencies, so consistent resampling—time alignment is needed [61],

[62] otherwise it will degrade the consistency of the time series.

Current research is developed in two directions corresponding to two levels of
quality assurance. At the single sensor level, many works proposed low-cost
sensor calibration using ML and virtual sensing to reduce measurement bias and
physical element dependence [40]. At the sensor network level, many studies
apply error handling standards according to international standards, typically IEC

61724 for PV data to eliminate gaps, duplicates and false values [63].

The Machine Learning with data fusion for low-cost sensors is considered a
promising solution for outlier detection and real-time data compensation [39], and
has been extensively used for outlier detection based on forecast errors [55] as

well as data compensation in computationally constrained environments [64].

In the context of PV/load forecasting, probabilistic models such as GPR and deep
learning models (CNN-LSTM) have been proven effective and can be integrated as the

core of data compensation/uncertainty estimation in online operations [64], [65].

Existing studies on data quality indicate that it is rare to address both levels in a
unified framework. However, in low-cost I0T-BEMS deployments for buildings,
these two levels need to be tightly coupled. Poor measurement integrity at the
source will inevitably affect network level analysis, while errors can distort sensor
readings. This motivates the development of a two-level data quality (DQ)

framework in this study.
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Table 3. Classification of data faults in low-cost l10T-BEMS and considered faults

in the thesis.
I Example in 1oT- .
Fault group Fault type Description BEMS Considered?
- Consecutive missing RF  packet loss,
Missing data Block missing samples node freeze v
. Randomly  missing Random  network
Scatter missing samples interference v
. Short-duration & ADC noise, V4
Outliers/ ike/ i | | litud .
Spikes Spike/ impulse arge-amplitude transient
anomalies transmission error
Drift/ Bias Linear/ Long-term  gradual Sensor aging, X (baseline
nonlinear drift deviation environment effects handling)
Stuck-at Constant value Sensor output stuck at Firmware fault, X _(basellne
Constant a fixed value sensor failure handling)
Time Delav/ shift Timestamp  delay/ Gateway clock X (baseline
misalignment y time shift offset, latency handling)
. Cross-sensor/ Missing data Correlated PV
Inconsistency L . .
. cross-system requiring correlation  stations/ zone v
multi-node . I
correlation exploitation Sensors

Table 3 summarized from systematic reviews on sensor/WSN data quality and
fault types [50], [57] and from energy data quality (Loads/PV) studies [56], [63].

The (V) mark indicates the subset of faults observed and quantitatively evaluated

in the thesis.

This study focuses on errors that directly affect the data series and the forecasting
model (block or scattered data loss, outliers, and inter-sensor inconsistencies).
Long-term errors such as sensor drift, stuck values, or time drift are assumed to
be addressed by baseline calibration and periodic maintenance, so they are not
analyzed in detail. The classification is used in the subsequent step to design the

data quality framework.

2.3.2. Methodology

In this study, we focus on tools that support non-expert users, who are essential
in ensuring BEMS data quality. The data quality assurance framework is built
based on the characteristics of low-cost 10T-BEMS systems and data errors
observed in real deployments. The proposed Data Quality Assurance pipeline with

two level of quality assurance is described as follows:
(Level 1) At the single-sensor level: focuses on reducing errors at the
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measurement origin, including:
(1) Sensor calibration during development to achieve target errors;
(2) Improving box design to maintain stability in harsh environments;

(3) Adding virtual/soft sensors for reducing missing and drift due to physical

components.

(Level 2) At the sensor network level: handles errors arising at the network and
post-collection data levels. This level implements the three-step pipeline:
Detection, Correction/Imputation, and Validation in an online solution. Machine
learning models (MLR, GPR online) are used to detect missing, spike, drift, and
inconsistency between nodes. With online models, the computational resources

(CPU/RAM) are reported to demonstrate real-time feasibility.

Overall, (Level 1) ensures the measurement accuracy of input data, while (Level
2) ensures the integrity, synchronization, and consistency of data in real-time

operations.

Estimating errors factors are often used including RMSE, MAE, and R2
[66][67].
2.3.3. Single Sensor level- Experiments

2.3.3.1.Sensor calibration & validation

An emerging trend among users is the self-development sensors using Arduino
platforms combined with various open modules [45]. The study aims to provide a
structured process with detailed steps to assist users in developing their

customized sensor solutions.

Experiment 1: Testing a self-develop DC meter vs reference instruments
In this experiment, we presented sensor estimation process in range 0-5A DC
current and 0-60V DC voltage. Materials for experiment shown in Figure 33

including:
v’ Standard signal generator are a Generator DC Current/VVoltage
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(Alimentation continue 0-100V 0-60A 6000W) and Load 5A.

v’ Reference devices: Keysight Digital Multi-meter 34450A, 5 Y% Digit,
OLED Display; Agilent 34450A Digital Multi-meter.

v Power supply (15V) was from DC power supply device of ELC - AL936N

Agilent Oscilloscope DSO-X
3024A

Dc power supply elc - AL936N

Figure 33. Devices for calibration experiment

The estimating sensor error process applied for testing in two parts:
(1) Testing with DC current part:

e Current input LTS-25P was supplied by Generator DC Current/Voltage;
Value of generator current (li,) was measured by Agilent 34450A Digital

Multi-meter;
e Value of current sensor (lou) was recorded on raspberry Pi. Result is RMSE
of lout (1-5A) = 0.7%;
(2) Testing with DC voltage part:

e Voltage input LV 25P was supplied by Generator DC Current/Voltage;

o Value of generator voltage (Vin) was measured by Keysight Digital Multi-
meter 34450A, 5 ¥ Digit, OLED Display;

e Value of voltage sensor (Vo) was recorded on raspberry Pi. Result is

RMSE of Vout (0-63V) = 0.97%.
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Figure 34. Block diagram of DC meter module Figure 35. Processing of DC
meter calibration

The diagram of the DC meter illustrated in Figure 34 and the processing of DC
meter calibration in Figure 35. In the experiment, we used high-precision devices
to calibrate the DC meter module.

2.3.3.2.Robust design against environment (packaging)

Experiment 2: Testing a self-develop sensor in high humidity environment
condition and improving the protective box design

In this experiment, the BME380 multi-parameter sensor, developed by the team,
was tested by comparing its measurement data with that of the AEOTEC
MultiSensor 6 sensor. As presented in [36], the self-developed BME280 sensor
showed a 15% error in humidity values when the room humidity exceeded 80%.
The first version (V1) of humidity sensor met the target error under RH<80%. In
a higher RH environment, the sensor error increased and a persistent bias appeared

due to a humid micro-climate created in sensor’s protective box.

To reduce moisture condensation, the box was redesigned with the following
changes: (1) increasing the air gap and area to increase ventilation; (2) changing
the position of the sensing head to avoid condensate from directly contacting the

sensing surface (see Figure 36).
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New version Self- develop sensor BME280 Multi-Sensor 6

Figure 36. Description Self-develop sensor & commercial sensor
In one day experiment data at a high humid (>80%), the new version achieves

better accuracy with error RH under 5% deviation comparing with Multi-sensor.

2.3.3.3.Virtual-sensor to reduce technical issues

By combining data, it is possible to infer critical information without an increase
in physical sensors. Virtual-sensors are developed basing on mathematical
equations and measure data to reduce number of physical sensors. In this study
[68], making a charging battery virtual-sensor to mitigate technical risks.
Experiment 3: Virtual sensing (State of Charge without charging sensor) [68]
The experiment on greenhouse platform presented how calculate State of Charge
(SoC) while lacking measured data in charging battery mode. Our study in [68]
identified SoC based on relationship of charge/discharge mode with battery
voltage changes. Therefore, the study proposed a function D(t) to observe the
duration time of charging/discharging battery modes:

DY) = {_n, Vg(t) — Vg(t—1) >0,

(2.1)

In discharging mode, we have Pbat=Pyjscharge

l:)discharge = Ploads + Ploss—discharge - pPV - PAC_in (2-2)
__ yend—discharge
Eloss - Zn:start—discharge Ploss—discharge (tn) X (tn - tn—l) (2-3)
In charging mode, we have Prat=Pcharge
l:)Charge = lDloads"'Ploss—charge - PPV - PAC_in (2-4)

The experiment data includes start-time, stop-time, C;, Ceng - Corresponding with
battery capacity at initial, endpoint with (Ci = Ceng).

For three-day data, assume that the losses were constant, Pjoags(t) is power of total
loads at time t.
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Eloss = Epy + Egria — Eioads (2.5)
Based on equations [1-6], the state of charge were identified.
=> SoC(tn)=S0C(t(n-1))+Poat(At) (2.6)
In this section, the experiment demonstrates a virtual SoC sensor based on Eq.

(2.6) to replace the physical sensor.

B r80
200 ,o -z PV power (Ppv)

‘P‘ump Power (Ppump)
- State of charge (SoC) 70
1

1759
150 4
’
1254 7
’

100 4

Power (W)

75

Figure 37. Description relationship of State of charge, Pump, and PV generation
Figure 37 illustrates the three-day trend of power flows (PV generation, Pump
power and State of Charge) without physical charging battery sensor installation.
In the next section, we will present a promising approach sensors network for data

quality.

2.3.4. Sensor Network level - Experiments

2.3.4.1 Introduction

In sensor network, the evaluation and calibration of individual sensors become
complexity and impractical. Prediction Models based machine learning
techniques are increasingly valuable tools for enhancing quality building
management [39]. Practical experiences highlight that datasets in sensor networks
are crucial for ensuring system reliability. However, selecting input features and

dataset sizes will effect to prediction errors if not properly managed.
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Figure 38. Deployment workflow of an online data compensating model
Figure 38 shows the second level of the data-quality framework, which handles
missing or faulty measurements at the network level. When a data-loss event occurs,
the system detects missing timestamps and sends a query to the compensation database.
A compensation model, trained on neighboring sensors and historical data, then
estimates the missing values. The estimated points are stored in an InfluxDB database

and later merged with the measured data for visualization, analysis and control.

This workflow illustrates how data quality is maintained in practice on a low-cost
platform. Data losses and sensor faults are processed automatically by the 10T-
BEMS backend. Low-skill users do not need to intervene, while the system still
preserves a consistent time series for analytics and control.

2.3.4.2 Experimental setup in VHH’s platform

The test case is a low-cost I0T platform in the Vietnam-Korea Vocational college
of Hanoi (VHH). The computer used for experiments is a general one in the
offices with configured CPU of Intel Core i7-8550U 1.80 GHz. Two months of
measured data (July and August 2020) with a 10-minute timestamp were used in
real experiments. Table 4 shows measured data symbols in the experiments.
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Table 4. Symbol of variables used in Experiments

No Variables Definition
1 TiM2 Temperature at node Mi02
2 TiZ1l Temperature at node Z01
3 TiZ2 Temperature at node Z02
4 TiZ3 Temperature at node Z03
5 Tout Outdoor temperature from a web service.
6 HVAC Value at point k of HVAC power in the office
7 Potal the total power consumption in the office
8 PVi with (i=1, 2, 3,4) The power of the i PV system nearby.
= B I
;1 Window 1 Y ¢ Window 2 ~
( l:l ) éi ek & ESS ((l])) @ _—H
Mag 02 MI01 704  Mag0l
Pi GATEWAY
ﬁjtwi@i
e Z0’37
Lamp 4 Lamp 2 Lamp 8 Lamp 6 ‘
T Y z
= o) B
i oy, i =
‘éi":@\: ‘& Aircon
701 Mi02 Controller L 3!
T—L&oj
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RELAY 1o
Lamp 1 Lamp 7 :
202 METTER ELECTRIC BOX

Figure 39. Description diagram sensor network of testbed in VHH
Figure 39 shows sensor types and locations in real platform. There are 2 energy
meters (measuring sub-loads: HVAC and Total). Among some multi-sensors, four

multi-sensors (Z01, Z02, Z03, and Mi02) placed on wall surfaces of building.

2.3.4.3 Machine learning for abnormal data detection & compensation
Nevertheless, practical challenges, such as computational latency and data

availability, must be carefully considered under source-constrained conditions.

The literature [69], [70] indicated that Gaussian Process Regression (GPR) is a
Machine Learning model for effectively managing data uncertainty. However,
practical research on this model still has gaps in terms of limited-source

computation and diversity data.
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Main objectives:

- Propose efficient online machine learning models to detect different data
faults and compensate for data in the I0T-BEMS platform.

- Focus on computational performance and available data.
a. Methodology

a.1 Multiple linear regression (MLR) [71]

“Multiple linear regression is a generalization of simple linear regression to the
case of more than one independent variable, and a special case of general linear

models, restricted to one dependent variable”.
The basic model for multiple linear regression is:

Y; = Bo + B1Xix + B2 Xiz + -+ BpXip T & (2.7)
Where: Each observationi=1, ..., n.

In formula above, we consider n observations of one dependent variable
and p independent variables. Y; is the i observation of the dependent variable,
Xij is i™ observation of the j" independent variable, j=1, 2, ..., p ; Bj represent
parameters to be estimated, and g; is the i independent identically distributed

normal error.

a.2 Gaussian process regression (GPR) — Online model [72]

The GPR technique has several significant advantages over other methods due to
providing a precise measurement with quantified reliability. However, the GPR is
quite complex compared with other regression models, so its computational speed
is limited. We proposed experiments to estimate the suitability of the GPR

technique for the data compensation models, which could run online.

GPR is a statistical approach approximating input-output mappings from

empirical data in prediction models. A Gaussian process regression equation:

y=f(X)+¢& (2.8)

Where: yeR : observed scalar output.
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f :R® >R Latent Regression function.

x e R”* : Input feature.

£~ N(0,07): Gaussian measurement noise with zero mean and standard
deviationo,.
A Gaussian Process function is:
£ ()~ GP(u(¥).k(xx)) .and y~N(u(X),K+0?l) (2.9)
Where: .(x): Mean function (often set to 0).
k(x,x'): Covariance (kernel) function with x,X' € R (input vectors)
X e R™® : Training - input matrix whose i row is x'.
y=[¥,.-y,] eR"™: Training outputs stacked as a column vector.
I e R™ : Identity matrix.
K =k(X,X)eR"™, K; =k(x,x,) (2.10)

Because updating a batch GPR requires re-inverting K + ol with o(n3) cost per
update, an Online GPR is preferred.

RBF kernel function use in Experiments:

k(X X) = o exp(—" X=X "ZJ (2.11)

202
Where: x,x' € R”: Input vectors

o >0: Signal variance (amplitude of the latent function); k(x,x)=o7¢

(>0: Length-scale (smoothness) — (If Length-scale value is small, the

function varies rapidly; If Length-scale value is large, the function varies slowly).

By Equ. (2.8) + Equ. (2.11), the Gaussian process model is computed and fitted
to the training set using maximum log likelihood method to tune the hyper-

parameters (Signal variance and Length-scale).
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b. Experimental results

Experiment 4: Evaluating MLR and GPR techniques for compensating
temperature data

In this experiment, two models, GPR and MLR, are for room temperature
compensation. The purpose is to compare performance of the GPR and MLR

technique for online data compensation models.

Data collection: Ten day data in Aug, 2020 is separated in (Train: 8 days)/
Validate: 1day/ Test: 1 day).

Data input: TiZ1, TiZ2, and TiM2lagl, time features (sin/cos of hour and day).
Data output: compensated PV1 power.

In this experiment, Temperature data at Z01 and Z02 node is model’s input. The
compensation temperature point of node M02 is the model’s data output. In data
preprocessing, time features (Trend features) were added in dataset to improve

model quality.

In this experiment, GPR with an RBF kernel vs trend and seasonal components,
trained and test, then producing sequential forecasts on validation and periodically
refitting every 1 hour using a 72 hour window. An alpha of 3e-5 improves

numerical stability. Estimators (RMSE, MAE) are used to estimate on fault region.

This work injects data faults into the validation set to simulate fault data and
evaluate model robustness. Fault data imputation simulation based on injecting

missing data in validation dataset (in Table 5):
> Block missing:

(1) NaN: Set NaN for TiM2 validation faulty in specific range (with k points).
Number of points in block equal k points. In this experiment, k equal

approximating 30% total number of samples in validation dataset.

(2) Spike: create noise in the block. With scale of 3, each point in the block is
randomly "mutated™ by 3 times the standard deviation.
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» Scatter missing: Set NaN for k discrete points in TiM2 validation data.

Table 5. The results of data compensation error on validation TiM2 dataset

Type of missing data of sensor TiM2 Estimators (°C) GPR MLR

RMSE 0.48 1.4

NaN S

30%) MAE 0.41 1.38

. RMSE 0.35 1.39

Block missing Splke MAE 0.14 1.38
NaN RMSE 0.05 1.11

15% MAE 0.04 1.1

Spike RMSE 0.022 1.15

P MAE 0.018 1.16

RMSE 0.32 1.35

30%

Scatter missin MAE 0.17 127
g - RMSE 0.36 1.63

MAE 0.19 1.47

The table above shows that across all data-loss scenarios (30% block and 30%

scatter, and 15% block and 15% scatter), the GPR model consistently has lower
RMSE and MAE than the MLR model.

v" For the case of 30% block missing and NaN data, the GPR error (RMSE =

0.48; MAE = 0.41 °C) is still much lower than MLR (RMSE = 1.4 °C;
MAE =1.38 °C). When the reduced loss rate data are up to 15%, GPR
model error drops rapidly (RMSE = 0.05 °C; MAE = 0.04 °C). In contrast,
MLR model error remains above 1 °C.

For Spike block missing, GPR still gives very small errors (RMSE is only
about 0.35 - 0.022 °C, MAE = 0.14 - 0.018 °C), while MLR fluctuates
around 1.15-1.39 °C. This shows that GPR not only compensates well when
the data are NaN but also “flattens” spikes, keeping the error at a very low
level even when large-amplitude noise appears.

For scatter missing, GPR continues to maintain lower error (RMSE = 0.32-
0.36 °C compared to 1.35-1.63 °C for MLR).
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Figure 40. Comparison performance of MLR vs GPR on ten days dataset with 30%
Block-missing data (NaN)
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Figure 41. Evaluation imputation performance with 30% Block-missing data (NaN)
Figure 40 shows performance of MLR and GPR model for data compensation on
ten days. Figure 41 presents clearly by indicating missing points, missing region
and confident. GPR present a better performance than MLR in test and validation
steps. In summary, GPR provides better, more stable data compensation than
MLR in both block and scatter data losses, especially when the data loss ratio is high.
Experiment 5: Evaluating the GPR model's computational performance.

In this experiment, we propose a method for compensating indoor temperature data
using online models. The primary objective is to balance computational performance
(on training time) with effective data compensation.

The study in [73] indicated that training data comprising a half-week to one-week data
are for feasible online data compensation models. In the study, we investigate the

models' data compensation horizons. Two models (Model 1 and Model 2) were trained
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using different dataset sizes collected in July 2020, respectively. Then. a 2.5-day dataset
comprising 350 samples collected was used to evaluate performance of models.

Table 6. Estimation factors of the compensation of TiM2 data model

Model with 2.5-day test dataset Model 1 Model 2
RMSE (°C) 0.18 0.22
MAE (°C) 0.49 0.5
TiM2 R2 0.984 0.986
Training Time (second) 3.25 19

In Table 6, the estimated indoor temperature values were compared against actual data
and both results are summarize with both RMSE, MAE and R2 values.

v With a 2.5-day test dataset (350 samples), both models achieve good accuracy:
RMSE =0.18+0.22 °C, MAE = 0.49+0.50 °C and R2 = 0.984+-0.986, which is
acceptable for building energy management.

v" For Model 1, training time is about 3.25 s and 19 s, confirming that both can be
retrained online, but Model 1 is better suited for near-real-time updates on

resource-constrained devices.
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Figure 42. Estimation and observation of indoor temperature of model 1
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Figure 43. Estimation and observation of indoor temperature of model 2

Figures 43 and Figure 44 further show that, over a 2.5-day loss period, the
compensated temperatures closely follow the measurements, indicating that the

proposed compensation approach remains reliable over several days of missing data.

Experiment 6: The GPR data compensation models of local PV systems.

The Gaussian Process Regression is for developing online photovoltaic (PV)
power compensating models [73]. The study investigated the development of a
compensated data model for PV generation based on the correlation of multiple

PV systems.

Data collection: The 1-week dataset is split into Train: 4 days, Validation: 1 day,
and Test: 2 days. PV data are time-aligned and resampled at 10-minute intervals.
To simulate data loss, missing blocks are created in the daytime interval [06:00—
18:00], with block lengths of 6-12 samples.

Data input: PV2, PV3, two time-lagged (1hour) values of PV1 (lagl, lag2), and
time features (sin/cos of hour and day).

Data output: compensated PV1 power.
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Figure 44. Correlation generation data of four PV systems

Figure 44 shows the strong correlation between PV1 and the PV2-PV3 stations
over the selected 1-week period (data collected in January 2022). The final model
is refitted over the entire Train before the Validation/Test prediction. When
compensating for each missing block in Validation/Test, the model only uses data
before the start of the block (history) to learn. This reflects the real-world model

deployment (no looking into the future).
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Figure 45. GPR compensation data PV1 (sample rate 10min)
Figure 45 shows the data compensation results at some missing data points in a

week (Train/Validation/Test). The result on Test reported at the masked points
has a Coverage value of 95.1%, showing that the model is reliable. The error on

Test MAE is 0.347, RMSE is 0.878, and R2 is 0.976, showing that the model
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matches the points accurately. This confirms that the model reproduces the true

PV 1 power and is sufficiently robust for practical data-compensation applications.

2.4. Adaptation of the IoT-BEMS platform to Local Conditions

In developing the l0T-BEMS system, the conceptual foundations and
architectural framework were initially derived from a large-scale 10T platform in
France that relied mainly on commercial sensors. To deploy in Vietnam, several
adaptations were required to account for local conditions. From the research
experiences in France, projects in Vietnam were designed to priorities
affordability, flexibility, and practical applicability. Instead of deploying high-
cost commercial sensors, the systems are implemented by integrating low-cost
commercial and self-developed devices. This integration was validated through
experimental activities to ensure the platform's interoperability, reliability, and
scalability under local constraints. The adaptation process focused on reducing
hardware costs and maintaining data quality, system robustness, and user
engagement. Therefore, this study provides valuable insights to scale the loT-

BEMS infrastructure in Vietnam.

2.5. Conclusions of part 2

In this part, the work proposed a highly interactive, modular, heterogeneous loT
architecture (RF24/ZigBee/Z-Wave/Wi-Fi, Raspberry Pi, time-series database,
and Real-time monitoring). Based on the implementation of real projects using

low-cost sensors and open-source platforms:
« Costinitial infrastructure cost < a few thousand USD.

« With no-code, pre-configured templates and “step-by-step” instructions,
basic skill users can deploy in one day for a standard room such as VHH's
testbed, schedule maintenance once a month, and the system automatically

warns when data is missing or incorrect.

This confirms the low-cost, low-skill friendly platform, suitable for deployment

conditions and easy to expand (many rooms/hundreds of measuring points).
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The proposed pipeline (including system design, data management and
configuration, and a two-level DQ insurance framework) enables reproducibility

and maintenance in real-life operations.

Overall, part 2 has provided a practical roadmap for designing an 10T-BEMS
platform with reliable data. In the following part, we will focus on a case study to
apply the platform to evaluate users' interventions and feedback, as well as

energy-efficiency strategies.
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Part 3. The implementation of 10T-BEMS platform — A case study

3.1. Overview

In this part, we present the application of I0T techniques for managing various
subsystems in an actual building. First, we introduce the experimental platform
integrated with loT technologies. Subsequently, we provide insights into the

electrical devices within the testbed environment.

The study explores how technology and data can be leveraged to implement
energy efficiency solutions. The correlation analysis of environmental conditions,
user behaviors, and energy provides a foundation for developing energy services

to reduce overall energy use and electricity costs [74].

Although the study was deployed on a small-scale platform, the findings from this
case study can serve as a basis for scaling up to larger applications through the

widespread use of 10T devices [75].

In addition, it is important to note that scientific studies in Energy Systems have
widely adopted a small-scale validation strategy. Thus, this research provides a

scalable foundation for broader real applications.

3.2. Introduction VHH’ project
This is a project under the cooperation between the Vietnam-Korea Vocational
College of Hanoi City (VHH) and the University of Science and Technology to

develop an experimental platform for research purposes.

In the platform, building services included the following:

(1) Monitoring building status;

(2) Maintenance devices (replace old-date lighting devices, sensor outage battery);

(3) Automatic control (schedule and energy-saving scenarios) for Water dispenser,
Lighting system (with 24 units of Lamp) and Air conditioner (12,000 Btu);
(4) Access database and analysis.
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Figure 46. Description location PV system in VHH [36]

Figure 46 is an overview of the VHH building, which is responsible for the energy
strategy experiments with a PV system a Hybrid Inverter 5 kW 1 phase with 04

lead-acid battery work in series [36].

s

e
L4 b -
Figure 47. Setting up an 10T experimental platform including location of sensor nodes,
air conditioner and lighting controllers, and energy meters [36]

-----

Figure 47 shows an loT experimental room layout in VHH for real-time
monitoring and control using wireless sensors and controllers network. The
network integrates multi-communication protocols (RF24, Z-Wave, ZigBee, and
Wi-Fi) via a Raspberry Pi-based local server, enabling real-time data collection,

energy monitoring, and HVAC control within testbed.
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Table 7. 10T Network Configuration for the testbed

Component

Function / Description

01 - Central Server
Raspberry Pi 3

Acts as a local server and data hub; manages three
gateways (RF24/Wi-Fi, Z-Wave, ZigBee) and stores
real-time sensor data.

01 - RF24 /| Wi-Fi Gateway

Transmits measured data from custom energy meters
to the server and sends control commands back to
actuators.

01 - AEOTEC Z-Wave Stick

Interfaces with Z-Wave multi-sensor nodes for indoor
environmental data acquisition.

01 - Xiaomi ZigBee / Wi-Fi Hub

Connects ZigBee sensors for temperature, humidity,
and door status monitoring.

02- ZigBee Sensors
Xiaomi Multi sensor (T, RH)

Measure indoor temperature and relative humidity.

03- Xiaomi Door Sensor

Detect open/close state of doors and windows.

04- Z-Wave Sensors
AEOTEC Multi sensor 6

Monitor multi-environmental parameters ((T, RH,
Light, Motion,...).

01- RF24 one phase Energy Meters

Monitor power consumption of the water dispenser.

01- RF24 four-phase Energy Meters

Monitor multi-channel electrical consumption

02- Wi-Fi Sonoff 4CH Pro

Control 8 LED lighting channels

01- Broad-Link SP3 Mini

Control the water dispenser power supply.

01- Wi-Fi Controller

Enables remote and automated HVAC control.

= Automatic Control

18:14:28

LOWEST o MEDIEUM HIGH HIGHEST

LOWEST MIDDLE HIGH HIGHEST

Figure 48. Description a Control Users Interface in VHH platform
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Figure 49. Description a Dashboard Users Interface in VHH platform
Figure 48 and Figure 49 present Users Interface for control lighting and Air

conditioning, and monitoring energy consumption. Users could interact with 10T

platform using laptop or smartphone.

3.3. Deployment of 10T-BEMS platform for nZEBs — A case study

This section highlights the practices for monitoring and controlling energy targets.
Data collection and processing can determine the actual building performance and
the effects of user behavior on energy demand. Feedback from measurement

systems is an effective means of influencing and changing behavior [34], [36].

This work focuses on strategies to influence behaviors and operate the building
more efficiently. Measurement data could provide insights into the relationships

among environmental conditions, behaviors, and energy [76].

Monitoring plans identified significant energy savings, behaviors that require

change, interventions to address the problem, and user benefits.
3.3.1. Environmental conditions vs Energy Correlation analysis

The purpose of this section is to demonstrate the relationship between
environmental conditions (such as temperature and humidity) and energy
consumption, providing a baseline for understanding user-driven behavioral

effects in the next section.
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Figure 50. Description correlation of Temperature, Humidity vs Consumption by
season in VHH's office

Figure 50 shows the seasonal distribution of humidity and the relationships among
temperature, humidity, and consumption. Summer has high moisture (relative
humidity [RH]> 60%), which significantly increases the cooling load. The scatter plot
shows that, at the same outdoor temperature, higher RH values are associated with
higher consumption. At high temperatures (over 30°C), a saturation zone appears, in
which decreasing the set-point no longer increases cooling efficiency, indicating the
capacity limit.
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Figure 51. Energy by bins vs season in VHH’s platform
Figure 51 shows HVAC consumption by temperature and season. Consumption
increases when T, exceeds 27 °C, and summer has the highest values. For the
same temperature range, summer always uses more energy than other periods
because both heat and humidity rise together. In spring and autumn, consumption
is much lower thanks to moderate weather.
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Although weather strongly influences HVAC demand, daily consumption is not
fully explained by environmental factors. Behavioral factors such as set-point
adjustments and openings also have a significant impact. Therefore, the following
section focuses on quantifying the effects of behavior under different

environmental conditions.

3.3.2. Data-driven behavior change analysis

Aim of this section:

e Analyze HVAC control behaviors to reveal patterns in energy use.

e Measure HVAC consumption associated with key behaviors (habit/time,
set-point, door status, occupancy).

e Propose behavior-change measures that improve efficiency.

Proposed a data-driven cycle for efficient, and sustainable operations:

Y

Y

Behaviors’ Detection Quantification Prediction

r 3

Interventions Simulation

F 3

Evaluation:

e Assess actual operation performance and user behavior.
¢ Quantify energy-saving potential achievable through behavioral interventions.

3.3.2.1. Behaviors’ HVAC on and Opening vs Energy Correlation

The relationship between behaviors and energy could reveal wasteful factors. This
study analyses the relationships among opening, HVAC operation, and

consumption over five months to identify the behavior of wasted energy in an office.

mmm Opening time (h) 104 Q08 4.3%

= Non-opening time (h)

= Avg Power (kW)
89 o0 s Opening (%) La
0.85

0.8 1
0.6 q
E

0.4+

0.24

0.0-
May-20 Jun-20 Jul-20 Aug-20 Sep-20 May-20 un-20 Jul-20 Aug-20 Sep-20
Month Month

Figure 52. HVAC On (h) Figure 53. Average HVAC power and
Total=1159.6h, Opening =2,9% Opening Portion

Observation of waste energy behavior in Figure 52 shows an opening when
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HVAC is on. In Figure 53, the significant increase in average HVAC power is
attributable to the opening behavior. In May, this value (0.978 kW) was more than
twice that of June (0.547 kW), corresponding to the opening (4.4% and 1.4%).
The information could help managers require staff to engage in energy-saving
efforts. The analyzed changes in energy behavior and the potential energy savings

could inform HVAC operational scenarios.
3.3.2.2. Set-point temperature and Energy correlation

According to results in the previous study [36], this work further analyzes the
relationship between set-point vs indoor temperature, and HVAC consumption

across operating sessions.

Data processing: (1) Consider HVAC is on; working hours (06AM-19PM);
door/window are closed. (2) Grouping by outdoor conditions: Outdoor
temperature > 30°C and divide RH into 2 groups (RH<60%, RH in the range of
60—70%) for fair environmental comparison. (3) Analyze by the median value of
the session and use IQR (Q25-Q75) to represent the variation (this will reduce

noise compared to coarse dispersion).
Explanation of symbols:

e Average indoor temperature: Tin, compared to set-point: Tsepoint: The line
represents the average indoor temperature when on (Tin). The shaded area
represents the range (Q25-Q75).

e Tracking error = Tin — Tsepoint: EQual to O when the set-point temperature
equals the room temperature.

e HVAC energy used per on session (kWh/session): The line shows the
average energy consumption and the shaded area where the interquartile
range (IQR) can be analyzed. The label n at each point indicates the version

currently on.
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Results and discussions:

In Figures 54-55, To is over 30°C, Ti, stays around 30°C, and the tracking error
(Tin — Tsetpoint) remains positive (about 5-6°C). This means the system does not
reach the set-point, which is consistent with a limited-power condition under high
heat load. When the set-point is changed from 24°C to 25°C and then 26°C, Tin
changes very little and the error does not shrink. Thus, lowering the set-point does

not improve the indoor temperature.

Figure 54 (zoomed to 21-23°C) shows sessions with very low set-points (21—
23°C), the error is still clearly positive. Even setting an extremely low set-point

does not help the room reach the target temperature.
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Figure 54. Indoor temperature response to set-point (median/IQR), 24-26°C
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Figure 55. Tracking error (Tin — Tsetpoint), S€SSIoN median + IQR, 24-26°C
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Figure 56. HVAC energy per ON-session (kWh/session) in the 24-26°C set-point range
In Figure 56, energy consumption per session increases as the temperature set-

point is lowered (most noticeable at 24°C), but the Tin index does not decrease
proportionally. This indicates an “oversetting” phenomenon: users set the
temperature too low, increasing energy consumption while providing only
minimal comfort benefits. Figures 54-56 also show the differences between
humidity groups. In high humidity conditions, users can lower the temperature
set-point, but the Tin index only reacts slightly. This indicates weak cooling

performance in hot and humid conditions.

Interventions: Re-examine HVAC system size and consider performance
upgrades when high temperature saturation is observed. Higher temperature set-
points or adaptive temperature set-points are recommended. In saturation
conditions, lowering the temperature set-point often increases energy

consumption without a commensurate improvement in comfort.
3.3.2.3. HVAC consumption modeling - Experiments

Using historical data to develop a model and then assume a change in Tetpoint and

estimate what will happen to energy & thermal conditions if the policy is applied.
The experiment purpose:

e Simulate policy based on the condition if the Tsepoint IS increased/decreased

(1°C), identify how expected energy consumption changes.
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e Using the Pareto curve to analyze Energy use (kWh) and Comfort penalty
AT to optimal savings with the minimal thermal comfort impact.

e Understand the mechanism by using a Heat map HVAC ON probability
against Tout VS Tsetpoint 10 See when raising Tserpoint 1S Most effective.

a. Methodology

(1) Gaussian Process-based HVAC consumption prediction model

Puvac = f(Tsetpoint, AT, occupancy, Tout, Tin, hour, weekday) (3.1)

e Change simulated Tsetoint ON entire sample (step 1°C).

e Expected energy:

Y PonXPrvacxAt/1000 (3.2)

(Pon=1 when HVAC is ON and P,,=0 when HVAC is OFF)
e Comfort AT: penalty if the set-point is outside the zone
(2) Description of measured Data

Measured data are collected from the building IoT system over 7 days with a
sampling period of 10 minutes.

Main variable groups:
e System status: HVAC_ON, Tsetpoint
e Environmental conditions: indoor vs outdoor temperature (Tin, Tout)
e Human factors: occupancy

e Energy: Puvac
e Variables: hour, weekday, temperature difference AT = Tin — Tsetpoint.
e Behaviors: HVAC ON/OFF, Change Tsetpoint

Assumption: increase Tsemoint Dy +1°C, other factors remain no change.

Estimated Data: One day data: 2020-09-10;

b. Results and analysis

The policy is to reduce energy use (kWh) while increasing AT slightly.
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Table 8. Simulation results of constant set-point policies: expected daily HVAC
energy and comfort penalty (10 September 2020)

Expected energy use

Set point (KWh/day) AT (policy)
22 3.39 8.5
23 3.60 7.5
24 4.03 6.5
25 4.76 55
26 (baseline) 5.44 4.5
27 4.76 3.5
28 4.03 2.5
351 o Policies
—8— Pareto front
@ Baseline (median setpoint)
é 5.0 4
% 4.5
E 4.0
3.5
3 4 5 6 7 8

Comfort penalty AT (°C)

Figure 57. Pareto curve for energy and comfort analysis (10/09/2020)

On the summer day, Table 08 and Figure 57 report the expected daily HVAC
consumption and the comfort penalty AT under different constant-cooling set-
point policies. The baseline operation (at 26 °C) consumes about 5.44 kWh per
day with comfort penalty AT (4.5°C).

From three policies (at 22 °C, 23 °C, and 28 °C), the 28 °C set-point is attractive
for reducing the expected daily HVAC consumption to 4.03 kWh (about 26%
energy savings). So, the comfort penalty must decrease by about 2 °C compared
to the baseline. In contrast, set-points at 22-23 °C could achieve larger energy
savings (around 34-38%), but at a higher comfort penalty (+3—4 °C) (not suitable
for general office use).
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Figure 58. HVAC ON probability heat map (Tout VS Tsetpoint)
A Heatmap (Figure 58) is used for adaptive control suggestions. The 25-27°C set-
point column for the high T, zone is lighter in colour (lower HVAC on
probability). In the lower Toy, the effect of increasing Tsewpoint IS Negligible. This
suggests that the set-point can be flexible by season. These results illustrate set-
point recommendations for both energy efficiency and comfort, and quantify the

trade-offs associated with more energy-saving strategies.

Interventions:

e On one summer day, increasing the set-point from 26 °C to 28 °C reduces
the expected HVAC consumption from 5.44 to 4.03 kWh/day (26% savings)
with a lower comfort penalty (about 2 °C).

e At high outdoor temperatures (above 30 °C), Figure 58 shows that
increasing the set-point by +1 °C reduces the probability that the HVAC
will turn on. Therefore, a simple control rule is increasing Tsetpoint DY +1 °C
whenever Ty, > 30 °C, to limit peak cooling demand while keeping AT

within the comfort limits of the Pareto analysis.
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3.3.2.4. Behavioral change strategies

e Real-time feedback: display warnings when the room is empty but the Air
conditioning is still on or the door is open when cooling.

e Target setting: sets a target to reduce Pyvac/week.

e Automation: turn off Air conditioning after 15 minutes of no occupancy,
synchronize with working schedules or occupancy sensors.

3.3.3. Rooftop Building - Energy strategies analysis
Maximizing self-consumption is essential for balancing demand and local power

supply. This section evaluates self-consumption capability by comparing load

indices across different time scales.

2 = B
8 8 8 8

Self-consumption [%]
[
o

Figure 59. Daily self-consumption from 12/9/2021-23/9/2021
On the daily scale, the self-consumption rate fluctuates widely from 10% to over

82% (see Figure 59). The results in different near days indicates that the variation
is not only from weather, it could be together with both storage plan and user
behaviors at smaller scale [36]. It is necessary to investigate in smaller scale to

improve self-consumption rate.
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Figure 60. Time-series of inverter operating variables and power-flow components
over a 24-h period (3 December 2021).

83



Figure 60 shows that although the PV system generated 8.6 kWh, the consumption
only 2.2 kWh, and the battery discharged from 8AM to 4PM because it’s SOC
was almost complete full before the PV peak. This behavior led to inefficient
storage operation and a low self-consumption rate (25%).
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Figure 61. Time-series of inverter operating variables and power-flow components
over a 24-h period (4 December 2021)

In Figure 61, when the user actively planned the charge—discharge schedule to
keep the SOC lower before the PV peak, the self-consumption rate increased to
75% and grid export dropped markedly. A local control strategy charges the
battery during overvoltage periods and discharges it when grid demand is high.

This helps stabilize the voltage and improves on-site PV utilization.

The minute-resolution experiments also show that user decisions when scheduling
battery charge and discharge directly affect storage performance and the

building’s self-consumption level.

3.3.4. Energy efficiency project analysis

After installing and operating the monitoring platform at VHH, we estimated the
energy efficiency after one year. Table 9 shows that after 1 year of operating the
I0oT-BEMS platform, there is a significant reduction in electricity consumption:
from 5,095 to 1,941 kWh/year. In contrast, the monitoring system consumed only
69 kWh/year. The electricity saved reached 3,154 kWh/year (around of 62%).
Based on an average electricity price of 2,000 VND/kWh, the cost saving is about

6.31 million VND/year, the payback period is approximately 2.38 years.
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Table 9. Summary of Energy Efficiency Calculation in VHH platform

Item Value Notes
Energy consumption ) )
i i 5,095 kWh/year Baseline operation
before the project (Ei)
Energy consumption i i i
qy p _ 1,941.05 kWhiyear Consgmptlon of electrical devices after
after implementation (Ee) applying 1oT-BEMS platform
Energy consumption .
o 69.33 kWh/year Additional load of the l0T-BEMS
of the monitoring system
Energy saved i i itori
ay 3.153.95 KWhiyear Reduction achieved through monitoring
Es =Ei—Ee and control
Electricity tariff (Pe) 2,000 VND/kWh Public college tariff

Annual electricity cost savings

6,307,900 VND/year  Direct financial benefit
Ry, = Es x Pe

Energy saving proportion

. 62% Percentage reduction relative to baseline
Ps=Es/Ei x 100%
IoT-BEMS investment cost (Iv) 15,000,000 VND Hardware and installation costs
Payback period (lv /RDb) 2.38 years Excluding maintenance and depreciation

These results show that the 10T-BEMS platform delivers practical efficiency:
continuous monitoring, detailed load analysis, optimal self-consumption, and
improved electricity usage behavior. Combining with a rooftop PV system, the
platform helps increase energy efficiency and reduce operating costs with a short

payback period.

3.4. Conclusions of Part 3

Part 3 applies the proposed I0T-BEMS platform to a real office building in
Vietnam to analyze how environmental conditions and user behavior jointly affect
HVAC energy use and rooftop PV self-consumption. Using one year of monitored

data, the analysis quantifies how outdoor temperature and humidity affect HVAC loads.

Choices of set-points, window opening and operating schedules, together with
behavior-driven demand, can be translated into simple control rules. Raising the
cooling set-point (about 2°C) can reduce daily HVAC energy use by 25-30%
while maintaining comfort within acceptable limits. In hot periods, these simple
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dynamic set-point rules work better than very low fixed set-points in the saturation

zone.

On the rooftop PV-Battery system, 10T-BEMS data show that monthly self-
consumption is around 40%. At the daily scale, values vary strongly (10-82%),
depending on how the storage system is operated. Minute-level experiments
confirm that user actions in scheduling battery charge and discharge can raise self-
consumption from 25 to 75% on a given day. Simple local rules charging the
battery during overvoltage periods and discharging it when demand is high, help

stabilize the connection point voltage and increase on-site PV utilization.

The energy-efficiency VHH’s project analysis shows an annual electricity
reduction of about 62% in the monitored system. The simple payback time for the

loT-BEMS investment is estimated at roughly 2.4 years.

Overall, Part 3 shows that a low-cost 10T-BEMS can deliver actionable, high-
resolution feedback on environment, behavior and storage, and support effective

user-oriented nZEB operation in real Vietnamese buildings.
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Part 4. Optimal energy management strategies toward nZEBs

4.1. Overview

4.1.1. Optimal energy management strategies context

Solar energy has high energy potential and low environmental impact. However,
its weather dependent, variable output can cause grid fluctuations, additional

losses, and power quality issues if it is not well controlled.

To address these challenges, many authors have introduced the concept of energy
autonomy in PV systems, defined as “the ability of the energy system to function
fully, without the need of external support in the form of energy imports, through
its local energy generation, storage and distribution systems™ [77]. In practice,
this autonomy is achieved by combining on-site PV, battery storage and

controllable loads within a suitable control architecture.
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R
7 1 = 1 = %
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_ mm a f> DC/AC l\l Grid
Pbat(t)>0 Pbat(t)<0 PSL(1) ﬂ i PGL(t)

il
=l

Battery

Figure 62. Diagram of energy flows in the Battery-PV system

Figure 62 illustrates the main energy flows in a grid-connected PV-battery system.
PV panels supply DC power that can (i) feed AC loads through an inverter, (ii)
charge the battery when surplus is available, and (iii) inject excess energy into the
grid. When PV and battery power are insufficient, the grid supplies the loads and
can also recharge the battery. During grid outages, the PVV—battery subsystem can
still support critical loads, provided that the state of charge (SoC) remains within

safe limits.
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In this thesis, PV-battery architectures are considered for optimal energy
management toward nZEB targets. The proposed I0T-BEMS platform is to
monitor energy flows in real time and to implement control strategies to improve

energy autonomy level.

4.1.2. Key aspects of building energy management strategy design

In the context above, this work focuses on designing optimal operating strategies
for small and medium-sized existing buildings equipped with low-cost monitoring
and control systems. The goal is to obtain strategies that can run on an loT

platform and also provide energy saving and cost benefits.
The following key aspects are considered in the strategy design:

« Model accuracy and computational performance, to ensure seamless
integration into a low-cost 10T platform.

. Flexibility of the optimization algorithms, so that different objectives and
constraints can be addressed.

. Practical feasibility of the energy management strategies, ensuring they can

be implemented and operated in real buildings.

The following sections build on these principles: Section 4.2 introduces the
energy models used in the optimization (PV, battery and load models), Section
4.3 presents the optimization problems and algorithms, and Section 4.4 applies

them to real case studies in France and Vietnam.

4.2. Energy Modeling

Buildings are complex systems, so developing full dynamic models is often costly
and data-demanding. In this work, instead of detailed numerical models, we adopt
simplified model approaches to loT-based building applications. Following [2],
building models are grouped into empirical, analytical and numerical types.
Numerical models require many physical parameters and high computing

resource, which are rarely available in small and medium-sized buildings.
Empirical and analytical models are more suitable for low-cost 10T platforms [30].
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Therefore, this thesis focuses on simple empirical and analytical models that are:

e Accurate enough for control and energy management,
e Lightweight model for embedded or low-cost PCs,
e Easy to embed into optimization algorithms.
Concretely:
e Analytical models are used for PV production and battery (SoC).
e Empirical (data-driven) models are used for load and demand forecasting

based on historical data, without detailed construction parameters.

These models form the basis for the energy management strategies developed in
Sections 4.3 and 4.4.

4.2.1. PV production model

4.2.1.1. General context

The development of PV systems recently has increased uncertainty variables in
the electricity systems and is a significant challenge in balancing energy demand
and power supply. Many studies show that PV forecasting is essential for both
grid operations and local energy management in buildings [78]. PV forecasts are
typically categorized by time horizon, ranging from very short-term (seconds to

minutes) and short-term (hours to days) to medium and long-term [78].

Based on the input data sources, forecasting PV production models are classified
into two approaches: direct and indirect [79]. The direct method predicts PV
production using historical PV power output data. This approach requires
historical power data, which is not always available and accessible. The rest
method uses weather-forecasting data obtained from a meteorological station or a
web service as input to the PV power-forecasting model. However, the model
developed by this method depends on the accuracy of weather forecast data. This

study uses weather forecasting data as the input of the PV forecasting model.

For online applications, PV forecasts are continuously updated as weather data

arrive. The PV production prediction model can be derived from solar radiation
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[29]. The power produced by the photovoltaic panels (PV) is given by the equation

below:

Ppy () = npy- Spy. Ipy (D) (4.1)
Where: Spy —PV panels area (m2); npy — Efficiency of PV system; lpy — Total
radiation on the plane of PV (W/m2), as following:

1+cosf
2

1—cosf3

Ipy () = DNI(t). cos8(t) + DHI(Y). + GHI(®). p. (4.2)

Ipy(t) = DNI(t). cos6,(t) + DHI(t) 4.3)
DNI - Direct irradiation (W/m2); DHI - Diffuse horizontal radiation (W/m2); GHI
- Global horizontal radiation consists of (DNI, DHI, and Reflection) (W/m2);
B - Tilt angle of PV panels (rad); 6z — Zenith angle (rad); 6 — Theta angle (rad);
p - Albedo coefficient; n.s = 0.2 for polycrystalline modules; Nyea = 0.8 and Ninverter

= 0.95 as a standard value it leads to npy = 0.15

Albedo

Figure 63. Components of solar radiation (direct, diffuse and reflection) to a PV plane
In Figure 63, Ipy represents the global solar irradiance on the panel plane (W/m?),
which is composed of 3 components (direct, diffuse and reflection) and is derived
from the weather data of Direct Normal Irradiance (DNI) ID (W/m?) and Diffuse
Horizontal Irradiance (DHI) Id (W/m2).

LO0SB) 11 (t).cos(0, (1) + 1y (). (4.4)

Lpy ()= p(t).cos(B(t))+ I4(t). 1—0023(13)

v p is the tilted angle of panel plane (radian). Horizontal panel correspond

to p=0;
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v" 0 (radian) is the angle between direct irradiance and the normal of the
panel (Beware: If 6>pi/2 then 14(t).cos(0(t))=0)

v' o, (Radian) is the zenith angle (It is noted that ¢+ O = ./2 with O is
sun’s altitude angle).

v' p is the reflection coefficient of ground (also called albedo and is

considered equal to 0.2 as a standard value)

v v (Radian) is the PV surface azimuth angle.

o Itis the panel’s orientation compared to the South Pole.

o Its value range is between —, and,.. y =0 for facing to South; v = .

/2 for facing to West, y = -./2 for facing to East.
N %PoleSlar

Prime (Greenwich)
Meridian

Meridian

Figure 64. Geometric definition of site  Figure 65. Definition of solar angles
coordinates on Earth: latitude (p) and  at a site: declination, hour angle, and
longitude (1) [29] local latitude [29]
e { (Radian) is the angle between the equatorial plane and the direct

irradiance, also called declination angle :

jour

365

(4.5)

27.(284 41,
50 =7 23.45 sin| 27284 Niow)
180

e njor is the day of the year (n=1 on the 1% January).
e M is the hour angle (radian). The hour angle is dependent on the true solar
time (TSV in hour):

o(t) =15.(TSV —12) % (4.6)
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TSV =t—t- =+ 50

15 60
ET =9.87-sin(2B)-7.53-cosB-1.5-sinB
B :2n.w

365

Where: t (hour) is the time indicated on our watch. 1=1 in winter days and 7=2 in
summer days. L (in degree) is the longitude of location regarding prime
(Greenwich) meridian. Its value is negative in East and positive in West. ET (in

minute) is the correction of the time equation (See Figure 64, Figure 65).

4.2.1.2. Developing an online PV production prediction model

In this work, PV forecasting is used for control-oriented energy management on
a low-cost platform. Recent studies show that lightweight online models, updated
on sliding windows of short- horizon data, can provide sufficiently accurate

forecasts while remaining computationally efficient for hardware [64].

In this context, the proposed PV model is designed to (i) run on a Raspberry-Pi-
class device, (ii) use only a short recent history of local measurements, and (iii)
exploit exogenous weather forecasts (cloud cover / nebulosity) that are updated
online. This design explains why the training dataset is short, as the model is

continuously updated with the most recent data.
(@) Methodology — Clear Sky Model

The PV power output can be characterized using measured irradiance (W/m?), but
the measurements are not always available in many locations [80]. Clear-sky
models therefore provide a useful alternative by estimating solar irradiance

without requiring on-site radiometric sensors.

Several families of clear-sky models come from straightforward geometric or
more complex models [80], [81]. Although complex models can be more accurate
in highly variable aerosol location, models often achieve comparable accuracy

with much lower computational cost and fewer input variables [83], [84].
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In this work, the online PV prediction model adopts a clear-sky—based indirect
approach:

v" A clear-sky irradiance curve is computed for the site, then corrected using
nebulosity forecasts obtained automatically from a web service.

v The irradiance is finally converted into expected PV power using nominal
system parameters and empirical efficiency factors [77], [84], [85].

v" The model is embedded in a low-cost Raspberry Pi within the PV
monitoring system: Nebulosity forecasts are updated every 3 hours; the
model parameters are periodically re-fitted on a short recent history of
measured PV data; approach real-time operation on low-computing

hardware and accurate for short-term energy management.

In previous work, the forecasting irradiance model is developed by approaching
the clear sky model and the Nelder-Mead optimization algorithm [86].

(b) Data collection
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Figure 66. Description of the weather station on GreEn-ER rooftop

The measured GHI/DNI dataset from Campbell Scientific weather station
(including Rotating Shadow band Radiometer) in Figure 66.
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Figure 67. Description of validation model diagram
(c) Evaluation factor:

RMSE = \/ mean(model value — measured value)? 4.7)

(d) Results and Validation

In Figure 67, validation model solution is described with RMSE. Measured PV
power data from a real PV's system in 2018. PV parameters include (location

(longitude and latitude), area of PV, tilted angle, and azimuth angle of PV plane).

----- measure (W/m?) g : ] +=:=- measure (W/m?)
..... model (W/m?) H HH +==== model (W/m?)

o o > .
A® o o S

(@) PV prediction in one year (b) PV prediction in one week

Figure 68. Comparison of PV power measure (W/m?), and PV model output

In Figure 68.a. model data (the red dot line) are sometimes much lower than
measured data (the blue dot line). For example, in Sep 2018, there was sometimes a
blue dot point’s value approximating higher twice the red dot point’s value. In Figure
68.b (for a one-week prediction horizon), the model could achieve a better prediction
result (average of RMSE=5.2W). Therefore, the model is suitable for short-term
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prediction. The model quality depends much on the accuracy of weather forecast
data. In this work, the online predicted PV production model is available on a

raspberry Pi 3 on Greenhouse.

4.2.2. Battery model [29]

In battery model, we are interested of linking storage capacity and

charge/discharge process at any given time. This model is described by [29].
Battery charging process:
Cbat(t) = Cbat(t —At).(1-o0) + Ne- Pbcat(t)- At (4-8)

Battery discharging process:

Coar(t) = Cpar(t = AD. (1 — 0) — 2220 (4.9)

C

Where: Cpat (t) - The battery's available capacity (Wh) at time t and t-At.
o is the self-discharge rate of the battery.
N and ng. are the charging and discharging efficiency of the battery.
Py (1) Pgi;t(t) are the charging/discharging power at time t, respectively.

If we consider an ideal battery with perfect charging and discharging performance
and no self-discharge, it can be simplified by:

Cbat(t +1) = Cbat(t) + Pyt * At (4-10)

Where: Ppat (t) (W) is the capacity of the charge if its value is positive, of the
discharge if it is negative. The battery's charging and discharging capacity will be
optimized according to energy production and consumption.

Energies balance: Pg (t) = Pioags (t) + 1* (Ppat (t)-Ppv (1)) (4.11)
Where: PG (t) is the electrical power exchanged with the grid (W); Ppy (t) is the power
from the PV panels supplied to the system; Piuags (t) is the total load power (W).

Electricity will be imported from the grid if its value is positive otherwise fed to the grid

if its value is negative. The inverter’s efficiency 1, in this study is assumed to be 1.
4.2.3. Load model

Forecasting a building's energy use is a key input to any optimization strategy.
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However, it is difficult to accurately predict demand because it depends on factors
such as weather and occupant behavior. In this work, the load model is developed
using historical data collected from the building. Data input includes TiZ3, Tour,

Protait-1; Data output is Protarr, With Prqeq) ¢ 1S prediction total power consumption.

The study developed total consumption model based on GPR technique and the
input data includes the indoor temperature (TiZ3) and the historical total power
consumption ( Prqart—1 ). The training dataset is one week data in July 2020, the
test dataset is one week data in August 2020. In this work, the root mean square
error is 25.6W, and the mean absolute error is 51.5W, and 95% confidence
interval. Since, the load model could be good to predict total power consumption

in one week horizon prediction.

4.2.4. A model-based energy management workflow in 10T-BEMS platform
To link the energy models of Section 4.2 with the optimization problems discussed in
Section 4.3, Figure 70 summarizes the overall workflow of the proposed model-based

energy management strategy implemented in the loT-BEMS.
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Figure 69.General workflow of model-based optimal energy management in loT-BEMS.

Figure 69 summarizes how the proposed loT-BEMS uses models to manage energy

flows. Historical building data (load, PV and tariffs) and weather forecasts are first
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collected and stored in the database. The PV production, short-term load and battery
SoC models work together to predict generation, demand and available storage
capacity. These predictions feed the optimization block, which checks the power
balance and storage limits and then computes control actions, such as charging or

discharging the battery, shifting loads or curtailing surplus PV.

The resulting setting points are sent to the load controllers and inverter, while the
monitoring system records SoC and load values for further analysis. The same
workflow is used in the Greenhouse and VHH case studies, with different
objectives (self-consumption and system sizing in the Greenhouse, electricity-bill

minimization in VHH).

4.3. Optimization Problem & Algorithm- Programming languages

4.3.1 Problems & Algorithms

Building energy management leads to constrained optimization problems, where
the objective is to minimize an energy-related cost (electricity bill) or maximize
on-site self-consumption, subject to power balance and battery SoC constraints.
Because of non-linear components (battery, tariff structure, operating modes, etc.),
these problems are non-linear. A wide range of optimization techniques apply in
building, including Linear Programming (LP), Quadratic Programming (QP),
Mixed-Integer Linear Programming (MILP), Sequential Quadratic Programming
(SQP), as well as meta-heuristics such as Genetic Algorithms (GA) and Particle
Swarm Optimization (PSO) [87]. This approach enables rapid convergence for

moderate-sized problems and is well-suited to low-cost hardware.

In this thesis, SQP is adopted as a good compromise between robustness,
computational efficiency and ease of integration into an automatic optimization tool
[87]. SQP iteratively solves a sequence of quadratic sub-problems that approximate
the original non-linear objective and constraints, using first-order derivatives to update
the search direction. This approach provides fast convergence for the moderate-size
problems and is well-suited for a low-cost hardware.

Principle of Sequential quadratic programming (SQP) [29]: algorithm solves
97



a sequence of optimization sub problems, each of which optimizes a quadratic

model of the objective subject to constraints.

By the direction searching process, dx, from initial possible point, x*, and

approximating nonlinear problem, Quadratic programming formula is:
. T
n(}}(n; d¥ . Hy. di + VE(xX) . dy (4.12)
Vh(x¥)". di + h(x¥) = 0
vg(x¥) . di + g(x) < 0

Vf(x*) Gradient of the scalar objective function f(x*), Vh(x*) and Vg(x*) is
the Jacobian of the equality constraints and inequality constraints of h(x*) and

g(x®) respectively.

or Ohy ohy 991 991
X xk X xf axk K axi‘ axk
Vilx®) = i , Vh(x") = oy oy ; Vg(x™) = 95, 55,
axk ax’f dxk 6fo axk

H, = V,.(V,L(x*, A%, u*¥)) - The Hessian of the Lagrangian function
Lo, Au) =f() +AT.h(x) + uf. g(x) (4.13)

A € RP; u € RY - The Lagrange multipliers.

x*1=xk+qdx - An approximating x**! is defined by searching direction of the
initial variable x¥, o €[0,1] - the step space, determined by to satisfy the objective

function and constraints [29][88].

In the case studies of Sections 4.4.2 and 4.4.3, this SQP-based solver is used to compute
daily optimal schedules for P\V/—battery operation and controllable loads under different

objectives (self-consumption maximization and electricity-bill minimization).

4.3.2 Programing languages - Software
The Grenoble Electrical Engineering Laboratory (G2Elab) developed a new open-

source NoLOAD using Python, which is easy to understand for designers [89].

NoLoad is a lightweight library for non-linear optimization that relies on
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Automatic Differentiation (AD) to compute derivatives. Role of Library:

e |t uses Sequential Least Squares Quadratic Programming algorithm,
providing a stable and low-cost computing solution, suitable even for
embedded hardware.

e The tool allows the designer to define constraints on both input and output
parameters of the model and to specify one or multiple objective functions
to be minimized.

e NolLoad automatically analyses inputs and outputs of a given model and
selects the appropriate forward or reverse AD mode to improve
computational performance.

e It also supports problems with vector-valued constraints, which is

convenient for complex engineering models.
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Figure 70. Overview of the NoLoad library architecture [89]

Figure 70 describes structure of the NolLoad library. It solves two kinds of
optimization problems for non-linear systems: system sizing and computing
optimal controller. In the next part, the study will apply these methods to control

strategies on two case in France and Vietnam.
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4.4. Optimal energy management applications — Study cases
In this section, the modelling and optimization framework introduced in Sections

4.2 and 4.3 is applied to case studies targeting nZEBs.
Two experimental platforms are considered:

e An aquaponics Greenhouse installed on the roof of a building in France,
used as a self-consumption and self-supply testbed.
e The VHH building in Vietnam is a grid-connected office/educational

facility operated under Vietnamese electricity tariffs.
From real platforms, three studies are analyzed:

e Section 4.4.1 — Energy balance analysis in nZEBs-Greenhouse testbed:
evaluation of annual and seasonal energy balance using load-matching
indicators (Ysupply, Yioad) Dased on monitored PV production and load data
from Greenhouse;

e Section 4.4.2 — Energy management strategies for PV—-Battery system
sizing: formulation of a data-driven sizing problem on Greenhouse
platform, combining monitored data, simplified models and optimization
to explore trade-offs between autonomy, curtailment and storage capacity;

e Section 4.4.3 — Optimal control strategies for minimal electricity bill:
application of the same modelling and optimization framework to VHH
Platform. The objective is to minimize the electricity bill while improving

self-consumption with operational constraints.

4.4.1. Energy balance analysis in a nZEB [68]

4.4.1.1. Case description - Problem statement

This section uses an aquaponics greenhouse as an experimental nZEB case study to
assess the energy balance. The goal is to quantify how well on-site PV generation
matches energy demand across different time scales and to identify periods of deficit
and surplus. The results provide a basis for the subsequent system sizing strategy
developed in Section 4.4.2.

100



Following the methodology adopted in European solar projects [28], the
relationship between on-site supply and electrical demand is characterized by two
load-matching indicators. The supply cover factor express fraction of PV
production is self-consumed in the building. The load cover factor express

fraction of the building demand is covered by on-site PV generation.

Over a time horizon [t;-t2] , the cover factor (ysupply) and load cover factor (Yioad)

are defined in [28] with equations below :

— fttlz min[g(t)-S(t)-{(t)*load(t)]dt

Ysupply = fttlzg(t)dt (4.14)
— ftt12 min[g(£)-S(t)-{(t)+load(t)]dt

Yioad = fttlz load(t)dt (4.15)

S(t) = Sc(t) - Sdc(t) (416)

Where:

t,/t, are start/end of the evaluation period;

g(t) is energy production; {(t) is energy losses;
load(t) is the power of loads;

S(t) is the storage energy balance defined by Equation 3. In which, s¢/sq4c are

charging/discharging storage energy.

In this case study, ysuply @and yioag are computed at daily and monthly scales; PV
production and load data come from the Greenhouse platform. The formulation
provides a quantitative basis to evaluate how close the monitored building
operates to nZEB targets, and to benchmark future scenarios with improved

control strategies and PV-battery configurations.

4.4.1.2. Results and discussion
Energy balance in the nZEB Greenhouse is evaluated using monitoring data for load
consumption, PV production and system losses, combined with PV production

simulations from PVSyst.
The loads have a nominal power of 42 W, and the system losses are approximated as
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10% of the nominal load (4.2 W). Assuming pump operates 24 h/day. Over one year,
the loads will consume 368.4 kWh, while the PV system produces 406.4 kWh,
giving a yearly supply cover factor of ysupply.year = 0.91 and a yearly load cover
factor of yicadyear = 1.0 [68]. This indicates that, on an annual basis, local PV generation

Is sufficient to cover the total demand, with only a small energy surplus.
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Figure 71. Consumption vs Production on Greenhouse project
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Figure 73. Distribution of production on Greenhouse Project
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Figure 71 compares monthly consumption and production. Load demand is almost flat
over the year (around 30 kwWh/month), whereas PV generation shows strong seasonality,
with high production in summer (May—August) and deficits in winter (January—
February and October—December). This pattern is reflected in Figure 72, where positive
values correspond to monthly surplus (export) and negative values to monthly deficit
(import). Figure 73 decomposes PV production into self-consumed energy and grid
export. During summer months, most of the surplus is exported, as the battery
capacity is not sufficient for seasonal storage. In contrast, winter operation relies

partly on grid import despite platform annual balance.

These results highlight that, for a small platform, PV sizing alone is not enough to
guarantee self-sufficiency at all times. Complementary demand-side management
(load shifting or curtailment in winter) and storage/control strategies are required to

improve seasonal matching between supply and demand.

4.4.2. Energy management strategies approach system sizing [68]
Based on the energy balance analysis in Section 4.4.1, this subsection formulates

a system sizing and operation problem for the autonomous Greenhouse.

4.4.2.1. Greenhouse’s platform description
In the SERRE project, the greenhouse is installed on the roof of the building in

Grenoble. It's a closed-loop, recirculating hydroponic system combining fish
farming and plant cultivation, aiming for energy self-sufficiency and sustainable
food production. Therefore, the greenhouse requires an energy monitoring and

control system to ensure continuous operation when solar power is insufficient.

Figure 74. Overview of the Greenhouse testbed in Grenoble [68]
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Figure 74 shows the aquaponics Greenhouse with PV system and an electrical box
for setting up the monitoring and control system. The electrical box stores the
inverter, protection devices, batteries, and a low-cost monitoring and control
board (based on an Arduino and a Raspberry Pi). The Raspberry Pi acquires power
data from the energy meters and sends control commands to the pump via the

Arduino.
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Figure 75. The Greenhouse Low-cost monitoring and control hardware [68]

A diagram of the PV-battery—load architecture and the main component ratings
is shown in Figure 75. The system consists of six PV panels (64 W/module); two
12 V&22 Ah batteries; a 2.4 KW inverter charger, and a 24VDC pump. This
configuration shows that the Greenhouse testbed is fully monitored and controlled
using inexpensive hardware, consistent with the low-cost loT-BEMS approach.
4.4.2.2. Problem formulations

The greenhouse is operated as an islanded DC system. The sizing problem is to select

PV and battery capacities, together with a simple pump control rule, such that:

« The IT monitoring load is always supplied;
- The aquaponics pump operates as long as possible over 24 h;
« Curtailment and unnecessary oversizing of PV and battery are limited.

To evaluate performance, the load-matching indicators introduced in Section
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4.4.1 are used at daily scale: yl,aq Close to 1 indicates that the local production is

sufficient to cover the daily demand, whereas ysyopy measures self-consumption.

The objective of the sizing problem is to maximize the self-consumption factor

(ysupply) Under constraints on the load cover factor (yiag) and State of charge (SoC).

Objectives function:
J =abs(X{=l) Poads(t) * At — Poy(t) * At) (4.17)
Input data: GreenHousePV-Prediction.csv; GreenHouselLoad-History.csv
Decision variables: Ppymp(t), Ppat(t)
Power balance: Pgig (t) = Pioads (t) +Plosses(t)+Pbat(t)- Ppv(t)
Boundary conditions: 0<Ppymp(t)<Pmax and - (Crmax-Cnin) /dt < Ppat < (Crnax-Cmin) /dt
For finding control step: a test time response of actuator in one minute was carried out.
Pump could be controlled to change from min power to max power and reversely.
For the optimization algorithm, assume that:
~Pmax<dPpump/dt<Pmax
Initial conditions:
nom=27.2V*22Ah=600Wh; Cpin=20%*Cporm=120Wh;
Crmax=80%*Cpnorm=480Wh; Cinit=50%*Cporm= 300WHh;
Pmax=25W; PeriLoas=10W
All symbols of variables in Greenhouse test case are presented and explained in Table 10.

Table 10. Symbols of variables in Greenhouse test case

Parameter Unit Description
Ji Wh Objective function: Total surplus PV energy
T hour Optimal time
Ppat W Capacity of the battery
Crorm Wh Rate capacity of the battery (600Wh)
Chin Wh 20% Cbat_norm
Crmax Wh 80% Chbat_norm
Cinit Wh Initial capacity of battery = 50% Crorm
Cha(t) Wh Capacity of battery at time t
Ppu(t) W Predicted Power produced by the PV system at time t
PLoad (t) w Toal consumption of Loads at time t
Poump (1) w Consumption of Pump at time t
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Poump_optimal (t) Optimal consumption of Pump at time t

Plosses(t) w Power losses at time t
Peritoad W Power consumption of IT components (10W)
Pmax W Highest consumption of Pump when it works
Pmin W Lowest consumption of Pump when it works
Pzero_pump W Consumption of Pump when it is not work (OW)
Total_load W Total power consumption of loads (IT and Pump)
w
w

Pbat_optimal (t)
SoC (t)
Socoptimal (t)

Optimal battery capacity at time t

=S

State of charge of battery at time t

=S

Optimal state of charge of battery at time t

4.4.2.3. Optimization strategy
Building on the modelling and optimization framework introduced in Sections 4.2
and 4.3, this subsection defines the specific control strategy for the Greenhouse

PV—Battery system.

Autonomous PV-Battery systems with similar objectives have been widely
analyzed in the literature [90], [91], [92], often using probabilistic indicators such
as Loss of Load/Power Loss Probability. Other studies have highlighted the
impact of inverter operation and conversion losses on the energy balance [93],
[94]. Although these losses are sometimes neglected in control design. In this
work, measured data from the Greenhouse are used to build empirical models of

PV production, load profiles and conversion losses.

The objective of the experiment is to ensure a continuous power supply to the IT
system and to minimize pump shutdown time to preserve the aquaponics
ecosystem. When PV power is available, it is used to supply the IT and pump
loads and to charge the battery; when PV power is insufficient or unavailable, the

battery discharges to support the loads.

The optimization strategy adjusts the pump power and battery charge/discharge
schedule based on stage of charge (SoC) and power balance constraints to

maximize self-consumption while avoiding storage oversizing.

4.4.2.4. Results and discussion
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On a typical summer day, the PV array produces about 1059 Wh while the total
daily consumption is around 730 Wh. At daily scale, the load cover factor is yioad
= 0.9, indicating that local production almost meets the demand, and the supply
cover factor is ysypply = 0.7, meaning that about 70% of PV energy is self-consumed

and 30% is surplus.
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Figure 76. Results of optimal management in Greenhouse
Figure 76 illustrates the optimal schedules of pump power, battery power and

battery state of charge.

During daytime (9:00-18:00), PV production supplies both the loads and battery
charging. At night, the battery discharges to support the loads as long as the SoC
remains above a minimum threshold. In the optimized strategy. The pump
operates at reduced power when SoC drops below a given level, and is temporarily

stopped when SoC becomes critically low, while the IT load remains supplied.

Compared to a naive strategy where the pump always runs at nominal power, the
proposed control extends the pump operating time by more than two hours under
the same PV—battery sizes, and avoids deep battery depletion that could interrupt
the IT system. This shows that even a simple optimization-based strategy can
significantly improve the autonomy and robustness of a small nZEB-like system

using measured data and a low-cost control platform.

4.4.3. Energy management strategy approach minimal electricity bill
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In this section, the optimization framework is applied to a typical Vietnamese
office building, using the VHH platform as a case study. The goal is to design
energy management strategies that minimize the electricity bill under a time of
use tariff, while maintaining safe operation of PVV—Battery system and loads.
The PV and battery models are reused from the Greenhouse project. While In the
load profile and tariff structure reflect Vietnamese conditions, characterized by
high cooling demand and strong PV production in summer, but limited storage

capacity due to investment constraints.

4.4.3.1. VHH’s platform description
The VHH platform represents an office building in Vietnam equipped with:

« On-site grid-connected PV system;

« A battery storage system with limited capacity;

« Monitored building loads with significant HVAC contribution;

« A time-of-use electricity tariff with off-peak, normal and peak periods,

where peak prices are substantially higher than the feed-in tariff.

Measured data from VHH (building consumption, PV production, and battery
operation) are used with the PV and battery models for testing energy
management strategies. The NoLoad optimization tool, developed by G2Elab
(University Grenoble Alpes), is used to solve optimal control problems.
4.4.3.2. Implement energy management strategies
a. Methodology Approach
Energy management is formulated as an optimization problem that coordinates

PV, battery and grid exchanges in response to the tariff profile.
Two stakeholder perspectives are considered:

e Grid operators: reduce peak demand and power fluctuations by the grid;
e Consumers: maximize on-site use of PV energy and minimize the

electricity bill.

The control variables include the battery charging/discharging power and the

fraction of building load supplied by PV, battery and grid over time.
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b. Optimization formulation

The optimization problem is defined over a 24-hour horizon with a time
discretization consistent with the monitoring data. Objective is minimize the daily
electricity cost, such as sum of energy imported from the grid weighted by time

of use prices, while encouraging self-consumption of solar energy.

Objective function:

J = (X480 Pim () * At ¢ Priceimpore(t) — Pex(t) * At * Priceeypore () ) (4.18)
Power balance: Pgrig (t) = Ploads (t) *+Poat(t)- Ppu(t)

Decision variables: battery charge/discharge power, grid import/export, and
operational status of flexible loads (when applicable).

Constraints: Power balance between PV, battery, grid and loads at each time step;
Battery state-of-charge (SoC) limits and maximum charge/discharge power;

Operational constraints on loads; Grid exchange limits if applicable.
Contraints include:

e Chin < Cpar(t)< Crnax;
o Cini=Cpa(T) ;
o Puis max < Ppat(t) <Pch max;
If Ppat (t) <0: charging power of battery: Pch (t) = Ppat (1);
If Ppat (1)>0: discharging power of battery: Pgis (t) = Ppat ();
o Pyria(t)>0: P, (D);
o Pgrig(t)<0; Pex (1) ;
o Ppu(t)>= Pex (D);
o Assumption: Pex max= 2000W; Pim_max= 2000W;
This optimization is implemented and solved in NoLoad library, using a
Sequential Least Squares Quadratic Programming (SLSQP) solver.
The symbols of parameters values for operation of PV system described in Table 11.

Table 11. Description of parameters and symbols used in simulation

Parameter Unit Description
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] VND  Objective function is total energy costs to be paid by users

P (b) w Power consumption taken from the grid at time t: P;,,, (t)
P (D) w Power pumped into the grid at time t: P, (t)
Pgria(t) w Power exchanged with the grid at time t
T hour Optimal time
AT hour  Time step of data
Poat w Power of the battery
Puis max W Battery discharge capacity limit
Pch_max W Battery charging capacity limit
Crorm Wh Rated capacity of the lead acid battery
Crin Wh 20% Crorm
Chrnax Wh 80% Crorm
Cinit Wh Initial capacity of battery = 50% Chnorm
Choar(t) Wh Capacity of battery at time t
Pou(t) Wh Power produced by the PV system at time t

Pricejmpore ~ VND  Electricity price purchased of EVN

Priceeypore ~ VND  Selling price of solar power of EVN

Ploads (t) w Total consumption of loads at time t
Pen-pv (1) W Power Battery charging capacity from solar energy at time t
Peh-grid (t) W Power Battery charging capacity from the grid at time t
Pou(t) w Installed PV Power at time t
Pex_max W Maximum Power export to grid
Pim_max w Maximum Power import from grid

c. Data collection

(1) Energy consumption data: Measured load data from the smart meters (Figure
77). The VHH test model has 3 groups of loads powered by 3 different power
lines: Plugs load; Lighting load; Air conditioning load (HVAC - highest priority).

(2) PV system data: one-day history of measured PV power data;

(3) Electricity tariff of EVN: The selling price of solar power to the grid (FIT2)
Priceeport =1.943 (VND/kWh); In Figure 78, electricity purchase price from the
grid Priceimport (VND/kWh).
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Figure 77. Detail consumption data from the smart meters in VHH’s Platform
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Figure 78. Electricity tariff profile applies to enterprises
d. Scenarios

The different simulation scenarios to compare benefits of the PV system with batteries.

Scenario 1 (Based-management) is presented a PV system without battery — Solar
energy prioritized for on-site consumption. If the excess energy produced by PV
panels will be transferred to the grid, if not enough solar energy will be taken from
the grid (Figure 79).

Scenario 2 is presented A grid connected PV system with battery (Minimize
electricity-bill) (Figure 80).
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Figure 80. Grid-connected PV system built-in batteries
e. Evaluation of energy and cost benefits

This section compares the obtained optimization results with scenarios on a
typical day in summer when buildings are at a time of high energy demand and
PV data. The electricity tariff profile is shown in Figure 82. According to the tariff,
there is a big difference between peak and off-peak hours. The electricity price in
Peak hours is two times higher than the PV selling price, and 1.3 times higher than
the PV selling price in normal hours. However, electricity prices at off-peak hours
are lower than PV electricity prices. The objective is to evaluate the benefits of energy
management solutions with/without energy storage systems.

- Scenario 1 (Based-management): Operating PV system without battery,

calculating total energy pumped into the grid and energy cost in 24h.
- Scenario 2 (Optimization SQP method): Operating a grid connected PV

system integrated batteries.
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In scenario 1, power consumption from the grid is required when solar power is
unavailable or insufficient to meet demand. Grid power consumption gradually

decreases as PV power increases during the day.
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Figure 81. Simulation of operation 6f iDV solar power system without battery
In Figure 81, the amount of PV generated is for export and self-consumption.
During certain daytime periods (7:30-10:00, 12:30-14:00, and 16:30-19:00), PV
generation is insufficient to meet the load demand. Therefore, the building must

import from the grid at a high tariff, which increases total electricity costs.

In scenario 2, when the battery is available, and the algorithm optimizes the

battery charge/discharge capacity, observing the dark blue line in Figure 81.
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Figure 82 shows that the amount of imported electricity at the time of high

electricity purchase price decreases during 16h30 to 19h (when the highest

purchase price of electricity). During the daytime, excess solar energy charges the

battery and maximizes benefits for building owners based on the difference

between the selling price of solar power and the electricity price.

15004

1000 A

500 -

4500
“““““ Pch_pv

—— Pch_grid
—— Pgrid_ex [ 4000
—— Total_load

---- price

F 3500

04

Power (W)

—500 -

—1000 -

—1500 -

F 3000

Price (VND)

F 2500

2000

______

F 1500

Figure 83. The relationship of energy flows and the purchase price of electricity

Figure 83 shows that battery prioritizes charging from the grid at night when

electricity purchase price is lowest (lower than the selling price of solar power). The

curves could give users an energy storage plan to optimize their electricity bills.

Table 12. Calculation results of cost and peak load demand in building

Scenarios Cost export Costimport  Electricity Bill Peak demand
(10° VND/day) (10° VND/day) (10° VND/day) (W)
Baseline: Building without 0 30508 30508 14185
PV system
Scenario 1: Building
integrated 13.915 14.419 0.504 1175.76
PV system without battery
Scenario 2: Building
integrated 10.106 4.804 -5.202 537.64

PV system with battery

Comparing the scenarios described in Table 12, we see that the storage system

reduces the peak load demand, and the electricity bill is the best obtained in the

PV system with the battery. This building has around 27% of the exported energy

reduction and a decrease of more than half the energy imported from the grid

compared with case 1.
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f. Evaluating the environmental impact
The optimization framework is used to compare the CO. emissions of two

configurations:
o Case 1: Building without PV system
« Case 2: Building integrated PV system with battery (the best case in
evaluation of energy and cost benefits)
In order to calculate global warming potential index in this study, we used
parameters in Table 13 below:

Table 13. Parameters for calculation the environmental impact assessment

Parameters Note
Spy = 17.6 M2
PVGWP = 4740 (kgCO.elyear/m2) Lifetime of monocrystalline silicon in 30
—— years[95]

Study time is N =30 (years)

Batewr=351(kgCO-eq / Total whole life cycle) Lead-acid battery 200Ah, Total whole life

Cbat=800Ah cycle is 3 years [96]

VN powergridCO. =815.4 (kgCO2eq / kWh) CO: emission average index of Vietnam's
power grid =0.8154 (tCO.eq/MWh) [97]

Total consumption =5095 (kWh/year) Data in project

Gridimport = 2498 (kWh/year) Data in project

Case 1: Building without PV system

Environmental impact assessment index (Global warming potential (GWP)) is

presented in the equation below:

GWP_1 (kgCO2e) = VN_powergridCO: * Gridimport (KWh/year) * N =
124633000.89 (kgCO2€q)

Note: In this case, the Total consumption equals Gridimport.
Case 2: Building integrated PV system with battery

Environmental impact assessment index (Global warming potential (GWP)) is

presented in the equation below:

GWP_2 (kgCO2e) = PVewe * Spy +Batewe * N/3 * Cpa + VN_powergridCO: *
Gridimport (KWh/year) * N = 62593500 (kgCO-€q)

115



In two cases, the environmental impact assessment index in Case 2 is lower than
2 times the index in Case 1. This confirms that the proposed methods not only
lower electricity bills but also support environmental objectives for low-carbon

buildings.

4.5. Conclusions of Part 4
Part 4 applied the proposed modelling and optimization framework to two case
studies in France (Greenhouse testbed) and Vietnam (VHH office building) to

design low-cost, control-oriented energy management strategies for nZEBs.

On the Greenhouse platform, an online PV production model was developed and
validated against monitored data. Annual PV generation reaches about 406 kWh,
corresponding to about 10% surplus. The applied control strategy improves on-
site self-consumption, avoids battery oversizing. The pump operating time

extends (2 hours) and local production almost meets the demand (yjoag = 0.9).

In the VHH office building, the same modelling approach is combined with a time
of use (TOU) tariff to minimize the electricity bill and assess environmental
impacts. The baseline building without PV, then adding PV and battery storage,
turns the building into a net exporter, with the greatest reduction in daily

electricity costs and a significant decrease in the annual GWP index.

The proposed low-cost 10T-BEMS, combined with simple yet powerful
optimization tools, can deliver fast computations and quantitative guidance for

PV-battery sizing, load control, and tariff-aware operation.
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Part 5. Conclusions of Thesis

The thesis presents a practical low-cost 10T platform for monitoring, improving

data quality, and optimizing energy management towards nZEBs. Low-skilled

users can deploy the platform, and it is suitable for conditions in Vietnam.

Contributions of the Thesis:

Proposed implement roadmap a Low-cost 10T-BEMS platform with
RF24/ZigBee/Z-Wave/Wi-Fi integration, time series database and real-
time dashboard; ready to expand and interact with existing systems.
Proposed a data quality assurance framework based on data fusion process
and data quality monitoring with online GPR for real-time data
compensation.

Propose energy models, optimization algorithms and optimal control
strategies focusing on increasing self-consumption through energy storage
system (ESS) and controllable load.

Fast calculation model suitable for low-cost hardware; simulation scenarios
support user planning and operational decision-making.

Validation through case studies: (1) VHH testbed (in Vietnam): comparison
of three building configurations; real PV with ESS options optimal results
when combined with contextual load control. (2) Greenhouse testbed (in
France): development of online PV forecasting model; at multiple
resolutions to assess nZEB energy balance; load matching analysis shows
demand of ESS to compensate for in-day fluctuations; maximizes self-

consumption strategy.

Limitations of the Current Work

The empirical evaluation is conducted on a limited number of buildings,
and over relatively short monitoring periods. For multi-building, multi-
climate and multi-season variability have not yet captured. The behavioral
dataset is modest, which constrains the analysis of occupant-related effects.

In the study, the integration of control strategies and energy storage

117



scheduling is only explored in a simplified way. It does not yet address
complete multi-objective optimization or detailed security privacy
constraints.

. The dataset and implementation are primarily used internally for the case
studies; open data/code releases and systematic benchmarking against other
approaches are still limited.

Future work:

« Expand  multi-building/multi-climate/multi-season  scale;  increase
behavioral sample size.

. Integrated predictive control, optimize multi-objective ESS, and enhance
security—privacy.

« Promote open source/data for community reproducibility, comparison and
improvement.

The thesis connects low-cost 10T devices, high-quality data, and fast model—
optimization—control algorithms, and also adopts a user-oriented design. Together,
these elements enable smart, efficient, and sustainable buildings that advance
nZEB goals in Vietnam's energy context.

This work is supported by HaUl, VHH, IES, and G2ELab during my internship
there. The data in this report has been reviewed and permitted by Dr Dang Hoang
Anh - Pl of HaUl's projects, Mr Bui Van Cong - Pl of VHH's projects, and Prof.
Benoit Delinchant — Greenhouse project, France.

The Thesis has been granted permission by VHH to use the data, system

architecture and experimental results obtained from the VHH platform.
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